• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Financial risk sources and optimal strategies in jump-diffusion frameworks

Prezioso, Luca 25 March 2020 (has links)
An optimal dividend problem with investment opportunities, taking into consideration a source of strategic risk is being considered, as well as the effect of market frictions on the decision process of the financial entities. It concerns the problem of determining an optimal control of the dividend under debt constraints and investment opportunities in an economy with business cycles. It is assumed that the company is to be allowed to accept or reject investment opportunities arriving at random times with random sizes, by changing its outstanding indebtedness, which would impact its capital structure and risk profile. This work mainly focuses on the strategic risk faced by the companies; and, in particular, it focuses on the manager's problem of setting appropriate priorities to deploy the limited resources available. This component is taken into account by introducing frictions in the capital structure modification process. The problem is formulated as a bi-dimensional singular control problem under regime switching in presence of jumps. An explicit condition is obtained in order to ensure that the value function is finite. A viscosity solution approach is used to get qualitative descriptions of the solution. Moreover, a lending scheme for a system of interconnected banks with probabilistic constraints of failure is being considered. The problem arises from the fact that financial institutions cannot possibly carry enough capital to withstand counterparty failures or systemic risk. In such situations, the central bank or the government becomes effectively the risk manager of last resort or, in extreme cases, the lender of last resort. If, on the one hand, the health of the whole financial system depends on government intervention, on the other hand, guaranteeing a high probability of salvage may result in increasing the moral hazard of the banks in the financial network. A closed form solution for an optimal control problem related to interbank lending schemes has been derived, subject to terminal probability constraints on the failure of banks which are interconnected through a financial network. The derived solution applies to real bank networks by obtaining a general solution when the aforementioned probability constraints are assumed for all the banks. We also present a direct method to compute the systemic relevance parameter for each bank within the network. Finally, a possible computation technique for the Default Risk Charge under to regulatory risk measurement processes is being considered. We focus on the Default Risk Charge measure as an effective alternative to the Incremental Risk Charge one, proposing its implementation by a quasi exhaustive-heuristic algorithm to determine the minimum capital requested to a bank facing the market risk associated to portfolios based on assets emitted by several financial agents. While most of the banks use the Monte Carlo simulation approach and the empirical quantile to estimate this risk measure, we provide new computational approaches, exhaustive or heuristic, currently becoming feasible, because of both new regulation and the high speed - low cost technology available nowadays.
2

Stratégies optimales d'investissement et de consommation pour des marchés financiers de type"spread" / Optimal investment and consumption strategies for spread financial markets

Albosaily, Sahar 07 December 2018 (has links)
Dans cette thèse, on étudie le problème de la consommation et de l’investissement pour le marché financier de "spread" (différence entre deux actifs) défini par le processus Ornstein-Uhlenbeck (OU). Ce manuscrit se compose de sept chapitres. Le chapitre 1 présente une revue générale de la littérature et un bref résumé des principaux résultats obtenus dans cetravail où différentes fonctions d’utilité sont considérées. Dans le chapitre 2, on étudie la stratégie optimale de consommation / investissement pour les fonctions puissances d’utilité pour un intervalle de temps réduit a 0 < t < T < T0. Dans ce chapitre, nous étudions l’équation de Hamilton–Jacobi–Bellman (HJB) par la méthode de Feynman - Kac (FK). L’approximation numérique de la solution de l’équation de HJB est étudiée et le taux de convergence est établi. Il s’avère que dans ce cas, le taux de convergencedu schéma numérique est super–géométrique, c’est-à-dire plus rapide que tous ceux géométriques. Les principaux théorèmes sont énoncés et des preuves de l’existence et de l’unicité de la solution sont données. Un théorème de vérification spécial pour ce cas des fonctions puissances est montré. Le chapitre 3 étend notre approche au chapitre précédent à la stratégie de consommation/investissement optimale pour tout intervalle de temps pour les fonctions puissances d’utilité où l’exposant γ doit être inférieur à 1/4. Dans le chapitre 4, on résout le problème optimal de consommation/investissement pour les fonctions logarithmiques d’utilité dans le cadre du processus OU multidimensionnel en se basant sur la méthode de programmation dynamique stochastique. En outre, on montre un théorème de vérification spécial pour ce cas. Le théorème d’existence et d’unicité pour la solution classique de l’équation de HJB sous forme explicite est également démontré. En conséquence, les stratégies financières optimales sont construites. Quelques exemples sont donnés pour les cas scalaires et pour les cas multivariés à volatilité diagonale. Le modèle de volatilité stochastique est considéré dans le chapitre 5 comme une extension du chapitre précédent des fonctions logarithmiques d’utilité. Le chapitre 6 propose des résultats et des théorèmes auxiliaires nécessaires au travail.Le chapitre 7 fournit des simulations numériques pour les fonctions puissances et logarithmiques d’utilité. La valeur du point fixe h de l’application de FK pour les fonctions puissances d’utilité est présentée. Nous comparons les stratégies optimales pour différents paramètres à travers des simulations numériques. La valeur du portefeuille pour les fonctions logarithmiques d’utilité est également obtenue. Enfin, nous concluons nos travaux et présentons nos perspectives dans le chapitre 8. / This thesis studies the consumption/investment problem for the spread financial market defined by the Ornstein–Uhlenbeck (OU) process. Recently, the OU process has been used as a proper financial model to reflect underlying prices of assets. The thesis consists of 8 Chapters. Chapter 1 presents a general literature review and a short view of the main results obtained in this work where different utility functions have been considered. The optimal consumption/investment strategy are studied in Chapter 2 for the power utility functions for small time interval, that 0 < t < T < T0. Main theorems have been stated and the existence and uniqueness of the solution has been proven. Numeric approximation for the solution of the HJB equation has been studied and the convergence rate has been established. In this case, the convergence rate for the numerical scheme is super geometrical, i.e., more rapid than any geometrical ones. A special verification theorem for this case has been shown. In this chapter, we have studied the Hamilton–Jacobi–Bellman (HJB) equation through the Feynman–Kac (FK) method. The existence and uniqueness theorem for the classical solution for the HJB equation has been shown. Chapter 3 extended our approach from the previous chapter of the optimal consumption/investment strategies for the power utility functions for any time interval where the power utility coefficient γ should be less than 1/4. Chapter 4 addressed the optimal consumption/investment problem for logarithmic utility functions for multivariate OU process in the base of the stochastic dynamical programming method. As well it has been shown a special verification theorem for this case. It has been demonstrated the existence and uniqueness theorem for the classical solution for the HJB equation in explicit form. As a consequence the optimal financial strategies were constructed. Some examples have been stated for a scalar case and for a multivariate case with diagonal volatility. Stochastic volatility markets has been considered in Chapter 5 as an extension for the previous chapter of optimization problem for the logarithmic utility functions. Chapter 6 proposed some auxiliary results and theorems that are necessary for the work. Numerical simulations has been provided in Chapter 7 for power and logarithmic utility functions. The fixed point value h for power utility has been presented. We study the constructed strategies by numerical simulations for different parameters. The value function for the logarithmic utilities has been shown too. Finally, Chapter 8 reflected the results and possible limitations or solutions

Page generated in 0.1409 seconds