Spelling suggestions: "subject:"boarine energy"" "subject:"cumarine energy""
11 |
Modélisation et optimisation d’un système de récupération d’énergie à l’échappement des moteurs de navires en utilisant la thermoélectricité (effet Seebeck) / Modeling and optimization of waste heat recovery system using the thermoelectricity (Seebeck effect) for marine applicationNour Eddine, Ali 25 October 2017 (has links)
Les gaz contenus dans les lignes d’échappement des moteurs Diesel pour la propulsion maritime peuvent atteindre des températures de l’ordre de 400 – 450 °C à la sortie du turbocompresseur. Une des voies possibles pour récupérer une partie de l’énergie contenue dans les gaz d’échappement est la thermoélectricité (effet Seebeck)avec des matériaux thermoélectriques côté chaud entre200 et 300 °C. Ce niveau de température correspond à des matériaux ayant de bonnes performances de conversion chaleur / électricité. De plus, l’eau de mer présente en abondance est une excellente source froide pour un générateur thermoélectrique (TEG). Par ailleurs, la consommation en carburant du moteur thermique est un poste de dépense majeure pour l’opérateur du bateau, et une réduction de cette consommation, même minime, peut générer des économies financières importantes.L’objectif de la thèse est de comprendre et analyser le fonctionnement d’un échangeur thermoélectrique,notamment en présence d’écoulement pulsés afin d’optimiser le fonctionnement du générateur thermoélectrique. A ce titre, plusieurs campagnes d’essais sur des maquettes de TEG ont été mises en place sur trois bancs d’essais (conçus particulièrement pour les travaux de thèse) où des mesures thermiques et électriques ont été réalisées. Le but de ces essais a été de tester les performances des modules thermoélectriques et les différents types d’échangeurs sur les points de fonctionnement d’un moteur Diesel pour déterminer (dans un premier temps) lesquels étaient les plus adaptés au fonctionnement moteur. Dans un second temps, les effets de la composition des gaz d’échappement et des écoulements pulsés sur le fonctionnement du TEG ont été étudiés. Un modèle de simulation a également été développé afin de modéliser le fonctionnement d’un générateur thermoélectrique. Des essais ont été réalisés afin de calibrer le modèle de simulation. / Thermoelectric energy (TE) harvesting (Seebeck effect)is a promising solution for waste heat recovery onboard ocean-going ships. On one hand, the marine Diesel engines reach around 400-450°C temperature at the turbocharger exhaust, corresponding to around 200-300°C on the hot side thermoelectric module (TEM)temperature, which is interesting according to recent studies on intermediate temperatures TE materials. In addition, seawater is available in abundance at low temperature, and represents an excellent heat sink. On the other hand, engine fuel consumption accounts today almost 50 % of ship operational costs; hence, a slight reduction of fuel consumption generates significant financial savings over the year.The objective of the Thesis is to understand and analyze the operation of a thermoelectric heat exchanger, especially in the presence of pulsations and to optimize the thermoelectric generator (TEG). Several test campaigns leading to different thermal and electrical measurement have been conducted. The campaigns were set up on three different test benches designed and fabricated during the thesis. The aim of these tests was to optimize the type of TEM’s and heat exchangers for Diesel engine application by investigating it’s the performances on engine operating points. In a second step, the effects of exhaust gas composition and pulsation flow on the TEG performances were investigated. A simulation model was developed to model the operation of a TEG. Tests were conducted to calibrate the simulation model.
|
12 |
Simulations numériques de l'action de la houle sur des ouvrages marins dans des conditions hydrodynamiques sévères / Numerical simulations of wave impacts on structures under severe hydrodynamic conditionsLu, Xuezhou 21 June 2016 (has links)
L'étude porte sur l'impact de vagues sur une paroi rigide en deux dimensions. Les travaux de modélisation numérique ont été réalisés à partir du code JOSEPHINE, utilisant la méthode Smoothed Particle Hydrodynamics (SPH), développé au sein du laboratoire LOMC. La méthode choisie repose sur une approximation faiblement compressible des équations d'Euler. Dans un premier temps, l'étude d'un cas académique de l'impact d'un jet triangulaire a permis de valider et améliorer le schéma numérique permettant la modélisation d'impacts violents. Les pressions d'impacts ont été étudiées et comparées à d'autres résultats analytiques et numériques. Dans un second temps, l'impact d'une vague solitaire déferlante a été modélisé. Les pressions d'impact ont été déterminées et comparées avec celles issues d'expériences. Après une analyse numérique approfondie des simulations mono-phasiques, un modèle diphasique a été spécifiquement développé pour tenir compte à la fois des phases eau et air. Le modèle SPH diphasique a permis d'améliorer la qualité des résultats, notamment pour le cas « air pocket impact », où une poche d'air est emprisonnée lors de l'impact. Le but final de ce travail est d'étudier la survivabilité des récupérateurs d'énergie marine adossés à des structures côtières lors d'événements météorologiques violents. / The present manuscript focuses on the wave impact on a rigid wall in two dimensions. The numerical computations were performed using a Smoothed Particle Hydrodynamics (SPH) software named JOSEPHINE, developed at the LOMC laboratory. The software is based on a weakly-compressible SPH model, where Euler equation of motion is solved. Firstly, an academic test case, the impact of a triangular jet was used to validate and improve the numerical scheme to model violent impacts.The impact pressures were studied and compared to analytical and other numerical results. Secondly, the impact of a breaking solitary wave was modelled.The impact pressures were determined and compared with those obtained in the experiments. After a depth numerical analysis of mono-phase flow computations, a two-phase model was developed specifically to consider both water and air phases. The two-phase SPH model improved the results quality, especially for the case "air pocket impact", where an air pocket is trapped during the impact. The ultimate goal of this work is to study the survivability of coastal structures equipped with a marine energy recovery device during severe weather events.
|
13 |
Quantitative Risk Assessment of Wave Energy TechnologyEricsson, Emil, Gregorson, Eric January 2018 (has links)
European Commission (2011) aims to reduce the greenhouse gas emission sby 85-95% by 2050 in comparison to 1990’s levels. Wave energy could be an important step to archiving this goal. This report aims to develop a quantitative risk assessment for the Uppsala University's wave energy converter. Failure rates have been collected from various databases and reports and have been processed accordingly in order to implement them in the risk analysis. CAPEX, OPEX and possible downtime windows have been estimated. A fault tree analysis (FTA) has estimated the total unavailability, unreliability and downtime. Furthermore an economical assessment model using Monte Carlo and the unreliability data from the FTA has been developed, estimating the expected LCOE and OPEX/WEC for parks consisting of 20, 100, and 200 WECs (wave energy converters). The result show that the O-ring seal has the largest impact on both the unavailability, and the economy of the OPEX/WEC. Second biggest contributor is the translator bearing failure. The study also shows that the CAPEX cost has to be reduced to make the LCOE competitive in comparison to other renewable sources. A comparison between the system unavailability and unreliability has also been done in terms of different component parameters.
|
14 |
Tidal turbine performance in the offshore environmentFleming, Conor F. January 2014 (has links)
A three dimensional computational model of a full scale axial flow tidal turbine has been used to investigate the effects of a range of realistic environmental conditions on turbine performance. The model, which is based on the Reynolds averaged Navier-Stokes equations, has been developed using the commercial flow solver ANSYS Fluent. A 1:30 scale tidal turbine is simulated in an open channel for comparison to existing experimental data. The rotor blades are directly resolved using a body-fitted, unstructured computational grid. Rotor motion is enabled through a sliding mesh interface between the rotor and the channel boundaries. Reasonably good agreement in thrust and power is observed. The computed performance curves are offset from the measured performance curves by a small increment in rotor speed. Subsequently, a full scale axial flow turbine is modelled in a variety of conditions representative of tidal channel flows. A parametric study is carried out to investigate the effects of flow shear, confinement and alignment on turbine performance, structural loading, and wake recovery. Mean power and thrust are found to be higher in sheared flow, relative to uniform flow of equivalent volumetric flow rate. Large fluctuations in blade thrust and torque occur in sheared flow as the blade passes through the high velocity freestream flow in the upper portion of the profile and the lower velocity flow near the channel bed. A stronger shear layer is formed around the upper portion of the wake in sheared flow, leading to enhanced wake mixing. Mean power and thrust are reduced when the turbine is simulated at a lower position in a sheared velocity profile. However, fluctuations in blade loading are increased due to the higher velocity gradient. The opposite effects are observed when the turbine operates at greater heights in sheared flow. Flow misalignment has a negative impact on mean rotor thrust and power, as well as on unsteady blade loading. Although the range of unsteady loading is not increased significantly, additional perturbations are introduced due to interactions between the blade and the nacelle. A deforming surface is introduced using the volume-of-fluid method. Linear wave theory is combined with the existing free surface model to develop an unsteady inflow boundary condition prescribing combined sheared flow and free surface waves. The relative effects of the sheared profile and wave-induced velocities on turbine loading are identified through frequency analysis. Rotor and blade load fluctuations are found to increase with wave height and wave length. In a separate study, the performance of bi-directional ducted tidal turbines is investigated through a parametric study of a range of duct profiles. A two dimensional axi-symmetric computational model is developed to compare the ducted geometries with an unducted device under consistent blockage conditions. The best-performing ducted device achieves a peak power coefficient of approximately 45% of that of the unducted device. Comparisons of streamtube area, velocity and pressure for the flow through the ducted device shows that the duct limits the pressure drop across the rotor and the mass flow through the rotor, resulting in lower device power.
|
15 |
Modelling and Advanced Control of Fully Coupled Wave Energy Converters Subject to Constraints: the Wave-to-wire ApproachWang, Liguo January 2017 (has links)
Ocean wave energy is a promising renewable source to contribute to supplying the world’s energy demand. The Division of Electricity at Uppsala University is developing a technology to capture energy from ocean waves with a wave energy converter (WEC) consisting of a linear permanent magnet generator and a point absorber. The linear generator is placed on sea bed and is driven directly by the floating absorber. Since March 2006, multiple wave energy converters have been deployed on the Swedish west coast outside the town of Lysekil. The technology is verified by long-term operation during at sea and satisfactory reliability of the electricity generation. This thesis focuses on developing advanced control strategies for fully coupled wave energy converters subject to constraints. A nonlinear control strategy is studied in detail for a single WEC subject to constraints under regular and irregular waves. Besides, two coordinated control strategies are developed to investigate the performance of a wave energy farm subject to constraints. The performance of the WECs using these control strategies are investigated in case studies, and optimal PTO damping coefficients are found to maximize the output power. The results show that these control strategies can significantly improve the performance of the WECs, in terms of mean power, compared to a conventional control. Besides these control strategies, a wave-to-wire simulation platform is built to study the power generation control of the WEC subject to constraints. The wave-to-wire simulation platform allows both nonlinear and linear control force. The results show that there is a good agreement between the desired value and the actual value after advanced control.
|
16 |
Fractal grid-turbulence and its effects on a performance of a model of a hydrokinetic turbineMahfouth, Altayeb 04 January 2017 (has links)
This thesis focuses on generating real world turbulence levels in a water tunnel rotor test using fractal grids and characterizing the effect of the fractal grid generated-turbulence on the performance of hydrokinetic turbines. The research of this thesis is divided into three studies: one field study and two laboratory studies. The field study was conducted at the Canadian Hydro Kinetic Turbine Test Centre (CHTTC) on the Winnipeg River. An Acoustic Doppler Velocimeter (ADV) was used in the field study to collect flow measurements in the river. The laboratory studies were conducted at the University of Victoria (UVic) fluids research lab and the Sustainable Systems Design Lab (SSDL). In addition, the Particle Image Velocimetry (PIV) technique was used in the experiential studies to obtain quantitative information about the vector flow field along the test section, both upstream and downstream of the rotor’s plane.
The first study is a field study aiming to provide real flow characteristics and turbulence properties at different depths from the free-surface to boundary layer region of a fast river current by conducting a field study in the Winnipeg River using ADV. A novel technique to deploy and control an ADV from free-surface to boundary layer in a fast-current channel is introduced in this work. Flow characteristics in the river, including mean flow velocities and turbulence intensity profiles are analyzed. The obtained results indicate that the maximum mean velocity occurs below the free-surface, suggesting that the mean velocity is independent of the channel depth. From the free-surface to half depth, it was found that changes in both the mean velocity and turbulence intensity are gradual. From mid-depth to the river bed, the mean velocity drops rapidly while the turbulence intensity increases at a fast rate. The turbulent intensity varied from 9% at the free-surface to around 17.5% near the river bed. The results of this study were used in the second lab study to help designing a fractal grid for a recirculating water flume tank. The goal was to modify the turbulence intensity in the water tunnel such that the generated turbulence was similar to that in the river at a location typical of a hydrokinetic device. The properties of fractal-generated turbulence were experimentally investigated by means of 2D Particle Image Velocimetry (PIV). The streamwise turbulent intensity profiles for different grids along the channel are presented. Additionally, visualization of the average and fluctuating flow fields are also presented. The results are in good agreement with results in literature. The third and final study investigated the power coefficient of a scale hydrokinetic turbine rotor in controlled turbulent flow (7.4 % TI), as well as in the low-turbulence smooth flow (0.5% TI) typical of lab scale testing. PIV was employed for capturing the velocity field. The results show that using realistic TI levels in the water tunnel significantly decrease the turbine’s power coefficient compared to smooth flow, highlighting the importance of considering this effect in future experimental campaigns. / Graduate
|
17 |
Co-located offshore wind and tidal stream turbinesLande-Sudall, David January 2017 (has links)
Co-location of offshore wind turbines at sites being developed for tidal stream arrays has been proposed as a method to increase capacity and potentially reduce the cost of electricity compared to operating either technology independently. This research evaluates the cost of energy based on capital expenditure and energy yield. It is found that, within the space required around a single 3 MW wind turbine, co-location provides a 10-16% cost saving compared to operating the same size tidal-only array without a wind turbine. Furthermore, for the same cost of electricity, a co-located farm could generate 20% more yield than a tidal-only array. These results are based on analysis of a case-study site in the Pentland Firth. Wind energy is assessed using an eddy viscosity wake model in OpenWind, with a 3 MW rated power curve and thrust coefficient from a Vestas V90 turbine. Three years of wind resource data is from the UK Met Office UK Variable (UKV) 1.5 km numerical model and corrected against a 400 m Weather Research and Forecasting (WRF) model run over the site. Tidal stream energy is modelled using a semi-empirical superposition of self-similar plane wakes, with a generic 1 MW rated power curve and thrust based on a full-scale, fixed-pitch turbine. Coincident tidal resource data is from the Forecasting Ocean Assimilation Model (FOAM) at 7.5 km resolution and correlated with a 150 m ADvanced CIRCulation model (ADCIRC). Wave parameters are corrected from ERA-Interim data with six months of wave buoy data. Multiple tidal turbine array layouts are considered, with maximum tidal energy generated for a staggered array with spacing of 20 tidal turbine diameters, Dt , streamwise and 1.5Dt cross-stream. However, cheapest cost of electricity from the tidal-only array, was found for a single row of turbines, due to minimal wake effects. Laboratory experiments were undertaken to validate the superposition wake model for use with large, shared support structures. Two rotors mounted either side of a central tower generate a peak wake velocity deficit 70% greater than predicted by superposition. This was due to high local blockage and a complex near-wake structure, with a corresponding increase in tower drag of 9%. Further experiments evaluated the impact of oblique inflow on turbines yawed at +/-15 degrees. These results validated a theoretical cosine correction for thrust coefficient and characterised the centreline wake drift with downstream distance. Extreme environmental loads for a shared support structure, compared to structures for wind-only and tidal-only, have also been modelled. A non-linear wave model was used to represent a single wave form with 1% occurrence for each hour of time-series data. Overturning moment about the base of a shared support, with one wind and two tidal turbines, was found to be 4.5% larger than for a wind-only turbine in strong current and with turbines in different operational states. Peak loads across the tidal array were found to vary by 2.5% and so little load reduction benefit could be gained by locating a shared support in a more sheltered area of the array.
|
18 |
The resilience of low carbon electricity provision to climate change impacts : the role of smart gridsKuriakose, Jaise January 2016 (has links)
The UK’s decarbonisation strategy to increasingly electrify heating and transport will change the demand requirement on the electricity system. Additionally, under a climate change future, it is projected that the decarbonised grid will need to be able to operate under higher average temperatures in the UK, increasing the need for comfort cooling during summer and leading to additional electricity demand. These new demands will result in greater variation between minimum and peak demand as well as a significant increase in overall demand. Concurrently, supply-side decarbonisation programmes may lead to more intermittent renewables such as wind, PV, tidal and wave, elevating variability in electricity generation. Coupled with the anticipated higher variation in demand this brings on several challenges in operating the electricity grid. In order to characterise these challenges this research develops a bespoke electricity dispatch model which builds on hourly models of demand and generation. The hourly demand profiles are based on a high electrification of heating, transport and cooling coupled with future temperatures premised on the UKCP09 high emission scenario climate projections. The demand profiles show a significant increase in peak demand by 2050 reaching 194 GW, mainly due to summer cooling loads which contribute 70% of the demand. The cumulative CO2 emissions budgets of the GB power sector that are consistent with avoiding global climate change to 2°C are used to develop two low carbon generation scenarios distinguished by the amount of intermittent renewable generation technologies. The dispatch model tests the capability of generation scenarios with the use of hourly generation models in meeting future demand profiles out to 2050.The outputs from dispatch model indicate that there are shortages and excesses of generation relative to demand from 2030 onwards. The variability analysis outlines low and high generation periods from intermittent technologies along with the pace at which intermittent generation increases or decreases within an hour. The characterisation of variability analysis reveals the type of reserve capacity or smart solutions that are required to maintain the security of electricity supply. The solutions that could address the challenges quantified from the model outputs in operating a decarbonised GB electricity grid are explored using expert interviews. The analysis of the stakeholder interviews suggests smart grid solutions that include technologies as well as changes in operational procedures in order to enhance the operational resilience of the grid. Active Network Management through monitoring and control, demand management, storage systems and interconnectors are proposed to address challenges arising from varying demand and generation variability.
|
19 |
Hydrodynamics of ducted and open-centre tidal turbinesBelloni, Clarissa S. K. January 2013 (has links)
This study presents a numerical investigation of ducted tidal turbines, employing three-dimensional Reynolds-averaged Navier-Stokes simulations. Bidirectional ducted turbines are modelled with and without aperture, referred to as ducted and open- centre turbines respectively. The work consists of two investigations. In the first, the turbine rotors are represented by actuator discs, a simplification which captures changes in linear momentum and thus the primary interaction of the turbine with the flow through and around the duct, while greatly reducing computational complexity. In the second investigation, the turbine rotors are represented through a CFD-integrated blade element momentum model, employing realistic rotor data, capturing swirl and blade drag in addition to the extraction of linear momentum. Both modelling techniques were employed to investigate the performances of bare, ducted, and open-centre turbines, relating these to the flow fields exhibited. For axial flow, substantial decreases in power generated by the ducted and open-centre turbines were found, relative to a bare turbine of equal total device diameter. For open-centre turbines, an increase in aperture size leads to a further reduction in power generated. Increased blockage was shown to positively affect the performance of all devices. Two further measures of performance were employed: power density, normalising the power by the rotor area, and basin efficiency, relating the power generated to the overall power removed from the flow. Moderate increases in power density can be achieved for the ducted and open-centre devices, while their basin efficiencies are of similar value to that of the bare turbine. For yawed inflow, the performance of the bare turbine decreases, whilst that of the ducted and open-centre turbines increases. This is due to an increased flow velocity following flow acceleration around the inlet lip of the duct and also an increase in effective blockage as ducts present greater projected frontal area when approached non-axially.
|
20 |
Estudo numérico de unidade flutuante monocoluna para conversão de energia de ondas do mar. / Numeric study of monocolumn floating unit for sea wave energy conversion.Rocha, Thiago Peternella 16 October 2017 (has links)
O uso contínuo de combustíveis fósseis já se mostrou deletério há anos, além de ser um meio energético finito. Por este motivo, a demanda atual e futura por sistemas de energia limpa é grande. Muito embora já existam diversas estruturas dedicadas a extrair energia do mar, o conceito em que se pretende trabalhar é inovador e de tecnologia nacional. Este tema foi desenvolvido inicialmente em uma abordagem teórica pelo então aluno de engenharia naval Daniel Prata Vieira e sua colega Ana Luísa Orsolini, como Trabalho Final do curso de Engenharia Naval e Oceânica da Escola Politécnica da USP, orientados pelo Prof. Dr. André Luis Condino Fujarra. Vieira & Orsolini (2011) [1] abordaram de uma forma diferente o tema de geração de energia por ondas do mar, trazendo à tona o uso da já consagrada plataforma monocoluna - protótipo que rendeu diversos prêmios de inventor do ano da Petrobrás, além de patente, ao Tanque de Provas Numérico, laboratório do departamento de engenharia naval da POLI-USP. O trabalho dos alunos Daniel e Ana também foi reconhecido nacionalmente recebendo o Prêmio Petrobras de Tecnologia 2011 no tema de Tecnologia de Energia. A continuação do trabalho consiste em levar a fundo alguns pontos importantes relacionados ao dimensionamento da plataforma para otimizar a geração de energia através do movimento relativo entre ela e um corpo flutuante interno ao seu moonpool. O objetivo do trabalho é definir melhores geometrias através da parametrização das dimensões principais e da utilização de métodos numéricos num estudo mais detalhado e aprofundado. O método de desenvolvimento leva em conta todos os fatores que influenciam na dinâmica do sistema como a hidrodinâmica de dois corpos (plataforma e corpo interno flutuante) e a dinâmica do gerador de energia (tipo de gerador e seu impacto no amortecimento do sistema global). / The continued use of fossil fuels has proved harmful for years, besides being a means finite energy. For this reason, the current and future demand for clean energy systems are great. Although there are already several structures dedicated to extracting energy from the sea, the concept on which it intends to work is innovative and with local technology. This theme has been already developed in a theoretical approach by the student of naval engineering Daniel Prata Vieira and his classmate Ana Luisa Orsolini, such as Final Paper Course of Naval Architecture and Ocean Engineering from the Escola Politécnica of USP, directed by Prof. Dr. André Luis Condino Fujarra. Vieira \\& Orsolini (2010) [1] studied in a different way the theme of energy generation from ocean waves, bringing up the use of already established monocolumn platform - prototype that earned several inventor of the year from Petrobras awards, besides patent, to the Numerical Offshore Tank, laboratory of the Naval Engineering Department of Poli - USP. The work of students Daniel and Ana was also recognized nationally getting the Petrobras Technology Award 2011 in the Energy Technology theme. The continuation of this work is to bring the background some important points related to platform design to optimize power generation through the relative motion between it and an internal floating body into moonpool. The objective is to define best geometries through the parameterization of the key dimensions and the use of numerical methods in a more detailed and in-depth study. The development method takes into account all the factors that influence the dynamics of the system such as the hydrodynamics of two bodies (platform and floating internal body) and the dynamics of the generator (type of generator and its impact on the damping of the global system).
|
Page generated in 0.0713 seconds