• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 170
  • 17
  • 15
  • 11
  • 10
  • 8
  • 8
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 333
  • 333
  • 333
  • 333
  • 145
  • 78
  • 73
  • 54
  • 47
  • 46
  • 43
  • 42
  • 42
  • 31
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Exact Markov chain Monte Carlo and Bayesian linear regression

Bentley, Jason Phillip January 2009 (has links)
In this work we investigate the use of perfect sampling methods within the context of Bayesian linear regression. We focus on inference problems related to the marginal posterior model probabilities. Model averaged inference for the response and Bayesian variable selection are considered. Perfect sampling is an alternate form of Markov chain Monte Carlo that generates exact sample points from the posterior of interest. This approach removes the need for burn-in assessment faced by traditional MCMC methods. For model averaged inference, we find the monotone Gibbs coupling from the past (CFTP) algorithm is the preferred choice. This requires the predictor matrix be orthogonal, preventing variable selection, but allowing model averaging for prediction of the response. Exploring choices of priors for the parameters in the Bayesian linear model, we investigate sufficiency for monotonicity assuming Gaussian errors. We discover that a number of other sufficient conditions exist, besides an orthogonal predictor matrix, for the construction of a monotone Gibbs Markov chain. Requiring an orthogonal predictor matrix, we investigate new methods of orthogonalizing the original predictor matrix. We find that a new method using the modified Gram-Schmidt orthogonalization procedure performs comparably with existing transformation methods, such as generalized principal components. Accounting for the effect of using an orthogonal predictor matrix, we discover that inference using model averaging for in-sample prediction of the response is comparable between the original and orthogonal predictor matrix. The Gibbs sampler is then investigated for sampling when using the original predictor matrix and the orthogonal predictor matrix. We find that a hybrid method, using a standard Gibbs sampler on the orthogonal space in conjunction with the monotone CFTP Gibbs sampler, provides the fastest computation and convergence to the posterior distribution. We conclude the hybrid approach should be used when the monotone Gibbs CFTP sampler becomes impractical, due to large backwards coupling times. We demonstrate large backwards coupling times occur when the sample size is close to the number of predictors, or when hyper-parameter choices increase model competition. The monotone Gibbs CFTP sampler should be taken advantage of when the backwards coupling time is small. For the problem of variable selection we turn to the exact version of the independent Metropolis-Hastings (IMH) algorithm. We reiterate the notion that the exact IMH sampler is redundant, being a needlessly complicated rejection sampler. We then determine a rejection sampler is feasible for variable selection when the sample size is close to the number of predictors and using Zellner’s prior with a small value for the hyper-parameter c. Finally, we use the example of simulating from the posterior of c conditional on a model to demonstrate how the use of an exact IMH view-point clarifies how the rejection sampler can be adapted to improve efficiency.
42

Markov chains for sampling matchings

Matthews, James January 2008 (has links)
Markov Chain Monte Carlo algorithms are often used to sample combinatorial structures such as matchings and independent sets in graphs. A Markov chain is defined whose state space includes the desired sample space, and which has an appropriate stationary distribution. By simulating the chain for a sufficiently large number of steps, we can sample from a distribution arbitrarily close to the stationary distribution. The number of steps required to do this is known as the mixing time of the Markov chain. In this thesis, we consider a number of Markov chains for sampling matchings, both in general and more restricted classes of graphs, and also for sampling independent sets in claw-free graphs. We apply techniques for showing rapid mixing based on two main approaches: coupling and conductance. We consider chains using single-site moves, and also chains using large block moves. Perfect matchings of bipartite graphs are of particular interest in our community. We investigate the mixing time of a Markov chain for sampling perfect matchings in a restricted class of bipartite graphs, and show that its mixing time is exponential in some instances. For a further restricted class of graphs, however, we can show subexponential mixing time. One of the techniques for showing rapid mixing is coupling. The bound on the mixing time depends on a contraction ratio b. Ideally, b < 1, but in the case b = 1 it is still possible to obtain a bound on the mixing time, provided there is a sufficiently large probability of contraction for all pairs of states. We develop a lemma which obtains better bounds on the mixing time in this case than existing theorems, in the case where b = 1 and the probability of a change in distance is proportional to the distance between the two states. We apply this lemma to the Dyer-Greenhill chain for sampling independent sets, and to a Markov chain for sampling 2D-colourings.
43

Bayesian Inference in Large-scale Problems

Johndrow, James Edward January 2016 (has links)
<p>Many modern applications fall into the category of "large-scale" statistical problems, in which both the number of observations n and the number of features or parameters p may be large. Many existing methods focus on point estimation, despite the continued relevance of uncertainty quantification in the sciences, where the number of parameters to estimate often exceeds the sample size, despite huge increases in the value of n typically seen in many fields. Thus, the tendency in some areas of industry to dispense with traditional statistical analysis on the basis that "n=all" is of little relevance outside of certain narrow applications. The main result of the Big Data revolution in most fields has instead been to make computation much harder without reducing the importance of uncertainty quantification. Bayesian methods excel at uncertainty quantification, but often scale poorly relative to alternatives. This conflict between the statistical advantages of Bayesian procedures and their substantial computational disadvantages is perhaps the greatest challenge facing modern Bayesian statistics, and is the primary motivation for the work presented here. </p><p>Two general strategies for scaling Bayesian inference are considered. The first is the development of methods that lend themselves to faster computation, and the second is design and characterization of computational algorithms that scale better in n or p. In the first instance, the focus is on joint inference outside of the standard problem of multivariate continuous data that has been a major focus of previous theoretical work in this area. In the second area, we pursue strategies for improving the speed of Markov chain Monte Carlo algorithms, and characterizing their performance in large-scale settings. Throughout, the focus is on rigorous theoretical evaluation combined with empirical demonstrations of performance and concordance with the theory.</p><p>One topic we consider is modeling the joint distribution of multivariate categorical data, often summarized in a contingency table. Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. In Chapter 2, we derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions.</p><p>Latent class models for the joint distribution of multivariate categorical, such as the PARAFAC decomposition, data play an important role in the analysis of population structure. In this context, the number of latent classes is interpreted as the number of genetically distinct subpopulations of an organism, an important factor in the analysis of evolutionary processes and conservation status. Existing methods focus on point estimates of the number of subpopulations, and lack robust uncertainty quantification. Moreover, whether the number of latent classes in these models is even an identified parameter is an open question. In Chapter 3, we show that when the model is properly specified, the correct number of subpopulations can be recovered almost surely. We then propose an alternative method for estimating the number of latent subpopulations that provides good quantification of uncertainty, and provide a simple procedure for verifying that the proposed method is consistent for the number of subpopulations. The performance of the model in estimating the number of subpopulations and other common population structure inference problems is assessed in simulations and a real data application.</p><p>In contingency table analysis, sparse data is frequently encountered for even modest numbers of variables, resulting in non-existence of maximum likelihood estimates. A common solution is to obtain regularized estimates of the parameters of a log-linear model. Bayesian methods provide a coherent approach to regularization, but are often computationally intensive. Conjugate priors ease computational demands, but the conjugate Diaconis--Ylvisaker priors for the parameters of log-linear models do not give rise to closed form credible regions, complicating posterior inference. In Chapter 4 we derive the optimal Gaussian approximation to the posterior for log-linear models with Diaconis--Ylvisaker priors, and provide convergence rate and finite-sample bounds for the Kullback-Leibler divergence between the exact posterior and the optimal Gaussian approximation. We demonstrate empirically in simulations and a real data application that the approximation is highly accurate, even in relatively small samples. The proposed approximation provides a computationally scalable and principled approach to regularized estimation and approximate Bayesian inference for log-linear models. </p><p>Another challenging and somewhat non-standard joint modeling problem is inference on tail dependence in stochastic processes. In applications where extreme dependence is of interest, data are almost always time-indexed. Existing methods for inference and modeling in this setting often cluster extreme events or choose window sizes with the goal of preserving temporal information. In Chapter 5, we propose an alternative paradigm for inference on tail dependence in stochastic processes with arbitrary temporal dependence structure in the extremes, based on the idea that the information on strength of tail dependence and the temporal structure in this dependence are both encoded in waiting times between exceedances of high thresholds. We construct a class of time-indexed stochastic processes with tail dependence obtained by endowing the support points in de Haan's spectral representation of max-stable processes with velocities and lifetimes. We extend Smith's model to these max-stable velocity processes and obtain the distribution of waiting times between extreme events at multiple locations. Motivated by this result, a new definition of tail dependence is proposed that is a function of the distribution of waiting times between threshold exceedances, and an inferential framework is constructed for estimating the strength of extremal dependence and quantifying uncertainty in this paradigm. The method is applied to climatological, financial, and electrophysiology data. </p><p>The remainder of this thesis focuses on posterior computation by Markov chain Monte Carlo. The Markov Chain Monte Carlo method is the dominant paradigm for posterior computation in Bayesian analysis. It has long been common to control computation time by making approximations to the Markov transition kernel. Comparatively little attention has been paid to convergence and estimation error in these approximating Markov Chains. In Chapter 6, we propose a framework for assessing when to use approximations in MCMC algorithms, and how much error in the transition kernel should be tolerated to obtain optimal estimation performance with respect to a specified loss function and computational budget. The results require only ergodicity of the exact kernel and control of the kernel approximation accuracy. The theoretical framework is applied to approximations based on random subsets of data, low-rank approximations of Gaussian processes, and a novel approximating Markov chain for discrete mixture models.</p><p>Data augmentation Gibbs samplers are arguably the most popular class of algorithm for approximately sampling from the posterior distribution for the parameters of generalized linear models. The truncated Normal and Polya-Gamma data augmentation samplers are standard examples for probit and logit links, respectively. Motivated by an important problem in quantitative advertising, in Chapter 7 we consider the application of these algorithms to modeling rare events. We show that when the sample size is large but the observed number of successes is small, these data augmentation samplers mix very slowly, with a spectral gap that converges to zero at a rate at least proportional to the reciprocal of the square root of the sample size up to a log factor. In simulation studies, moderate sample sizes result in high autocorrelations and small effective sample sizes. Similar empirical results are observed for related data augmentation samplers for multinomial logit and probit models. When applied to a real quantitative advertising dataset, the data augmentation samplers mix very poorly. Conversely, Hamiltonian Monte Carlo and a type of independence chain Metropolis algorithm show good mixing on the same dataset.</p> / Dissertation
44

Prostorový bodový proces s interakcemi / Spatial point process with interactions

Vícenová, Barbora January 2015 (has links)
This thesis deals with the estimation of model parameters of the interacting segments process in plane. The motivation is application on the system of stress fibers in human mesenchymal stem cells, which are detected by fluorescent microscopy. The model of segments is defined as a spatial Gibbs point process with marks. We use two methods for parameter estimation: moment method and Takacs-Fiksel method. Further, we implement algorithm for these estimation methods in software Mathematica. Also we are able to simulate the model structure by Markov Chain Monte Carlo, using birth-death process. Numerical results are presented for real and simulated data. Match of model and data is considered by descriptive statistics. Powered by TCPDF (www.tcpdf.org)
45

Practice-driven solutions for inventory management problems in data-scarce environments

Wang, Le 03 June 2019 (has links)
Many firms are challenged to make inventory decisions with limited data, and high customer service level requirements. This thesis focuses on heuristic solutions for inventory management problems in data-scarce environments, employing rigorous mathematical frameworks and taking advantage of the information that is available in practice but often ignored in literature. We define a class of inventory models and solutions with demonstrable value in helping firms solve these challenges.
46

A comparison of Bayesian model selection based on MCMC with an application to GARCH-type models

Miazhynskaia, Tatiana, Frühwirth-Schnatter, Sylvia, Dorffner, Georg January 2003 (has links) (PDF)
This paper presents a comprehensive review and comparison of five computational methods for Bayesian model selection, based on MCMC simulations from posterior model parameter distributions. We apply these methods to a well-known and important class of models in financial time series analysis, namely GARCH and GARCH-t models for conditional return distributions (assuming normal and t-distributions). We compare their performance vis--vis the more common maximum likelihood-based model selection on both simulated and real market data. All five MCMC methods proved feasible in both cases, although differing in their computational demands. Results on simulated data show that for large degrees of freedom (where the t-distribution becomes more similar to a normal one), Bayesian model selection results in better decisions in favour of the true model than maximum likelihood. Results on market data show the feasibility of all model selection methods, mainly because the distributions appear to be decisively non-Gaussian. / Series: Report Series SFB "Adaptive Information Systems and Modelling in Economics and Management Science"
47

Bayesian Estimation of Mixture IRT Models using NUTS

Al Hakmani, Rahab 01 December 2018 (has links)
The No-U-Turn Sampler (NUTS) is a relatively new Markov chain Monte Carlo (MCMC) algorithm that avoids the random walk behavior that common MCMC algorithms such as Gibbs sampling or Metropolis Hastings usually exhibit. Given the fact that NUTS can efficiently explore the entire space of the target distribution, the sampler converges to high-dimensional target distributions more quickly than other MCMC algorithms and is hence less computational expensive. The focus of this study is on applying NUTS to one of the complex IRT models, specifically the two-parameter mixture IRT (Mix2PL) model, and further to examine its performance in estimating model parameters when sample size, test length, and number of latent classes are manipulated. The results indicate that overall, NUTS performs well in recovering model parameters. However, the recovery of the class membership of individual persons is not satisfactory for the three-class conditions. Also, the results indicate that WAIC performs better than LOO in recovering the number of latent classes, in terms of the proportion of the time the correct model was selected as the best fitting model. However, when the effective number of parameters was also considered in selecting the best fitting model, both fully Bayesian fit indices perform equally well. In addition, the results suggest that when multiple latent classes exist, using either fully Bayesian fit indices (WAIC or LOO) would not select the conventional IRT model. On the other hand, when all examinees came from a single unified population, fitting MixIRT models using NUTS causes problems in convergence.
48

Optimal Bayesian estimators for latent variable cluster models

Rastelli, Riccardo, Friel, Nial 11 1900 (has links) (PDF)
In cluster analysis interest lies in probabilistically capturing partitions of individuals, items or observations into groups, such that those belonging to the same group share similar attributes or relational profiles. Bayesian posterior samples for the latent allocation variables can be effectively obtained in a wide range of clustering models, including finite mixtures, infinite mixtures, hidden Markov models and block models for networks. However, due to the categorical nature of the clustering variables and the lack of scalable algorithms, summary tools that can interpret such samples are not available. We adopt a Bayesian decision theoretical approach to define an optimality criterion for clusterings and propose a fast and context-independent greedy algorithm to find the best allocations. One important facet of our approach is that the optimal number of groups is automatically selected, thereby solving the clustering and the model-choice problems at the same time. We consider several loss functions to compare partitions and show that our approach can accommodate a wide range of cases. Finally, we illustrate our approach on both artificial and real datasets for three different clustering models: Gaussian mixtures, stochastic block models and latent block models for networks.
49

Classification of phylogenetic data via Bayesian mixture modelling

Loza Reyes, Elisa January 2010 (has links)
Conventional probabilistic models for phylogenetic inference assume that an evolutionary tree,andasinglesetofbranchlengthsandstochasticprocessofDNA evolutionare sufficient to characterise the generating process across an entire DNA alignment. Unfortunately such a simplistic, homogeneous formulation may be a poor description of reality when the data arise from heterogeneous processes. A well-known example is when sites evolve at heterogeneous rates. This thesis is a contribution to the modelling and understanding of heterogeneityin phylogenetic data. Weproposea methodfor the classificationof DNA sites based on Bayesian mixture modelling. Our method not only accounts for heterogeneous data but also identifies the underlying classes and enables their interpretation. We also introduce novel MCMC methodology with the same, or greater, estimation performance than existing algorithms but with lower computational cost. We find that our mixture model can successfully detect evolutionary heterogeneity and demonstrate its direct relevance by applying it to real DNA data. One of these applications is the analysis of sixteen strains of one of the bacterial species that cause Lyme disease. Results from that analysis have helped understanding the evolutionary paths of these bacterial strains and, therefore, the dynamics of the spread of Lyme disease. Our method is discussed in the context of DNA but it may be extendedto othertypesof molecular data. Moreover,the classification scheme thatwe propose is evidence of the breadth of application of mixture modelling and a step forwards in the search for more realistic models of theprocesses that underlie phylogenetic data.
50

Bayesian Logistic Regression Model with Integrated Multivariate Normal Approximation for Big Data

Fu, Shuting 28 April 2016 (has links)
The analysis of big data is of great interest today, and this comes with challenges of improving precision and efficiency in estimation and prediction. We study binary data with covariates from numerous small areas, where direct estimation is not reliable, and there is a need to borrow strength from the ensemble. This is generally done using Bayesian logistic regression, but because there are numerous small areas, the exact computation for the logistic regression model becomes challenging. Therefore, we develop an integrated multivariate normal approximation (IMNA) method for binary data with covariates within the Bayesian paradigm, and this procedure is assisted by the empirical logistic transform. Our main goal is to provide the theory of IMNA and to show that it is many times faster than the exact logistic regression method with almost the same accuracy. We apply the IMNA method to the health status binary data (excellent health or otherwise) from the Nepal Living Standards Survey with more than 60,000 households (small areas). We estimate the proportion of Nepalese in excellent health condition for each household. For these data IMNA gives estimates of the household proportions as precise as those from the logistic regression model and it is more than fifty times faster (20 seconds versus 1,066 seconds), and clearly this gain is transferable to bigger data problems.

Page generated in 0.0761 seconds