• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 8
  • 8
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Perfect Sampling of Vervaat Perpetuities

Williams, Robert Tristan 01 January 2013 (has links)
This paper focuses on the issue of sampling directly from the stationary distribution of Vervaat perpetuities. It improves upon an algorithm for perfect sampling first presented by Fill & Huber by implementing both a faster multigamma coupler and a moving value of Xmax to increase the chance of unification. For beta = 1 we are able to reduce the expected steps for a sample by 22%, and at just beta = 3 we lower the expected time by over 80%. These improvements allow us to sample in reasonable time from perpetuities with much higher values of beta than was previously possible.
2

Sampling from the Hardcore Process

Dodds, William C 01 January 2013 (has links)
Partially Recursive Acceptance Rejection (PRAR) and bounding chains used in conjunction with coupling from the past (CFTP) are two perfect simulation protocols which can be used to sample from a variety of unnormalized target distributions. This paper first examines and then implements these two protocols to sample from the hardcore gas process. We empirically determine the subset of the hardcore process's parameters for which these two algorithms run in polynomial time. Comparing the efficiency of these two algorithms, we find that PRAR runs much faster for small values of the hardcore process's parameter whereas the bounding chain approach is vastly superior for large values of the process's parameter.
3

Sampling from the Hardcore Process

Dodds, William C 01 January 2013 (has links)
Partially Recursive Acceptance Rejection (PRAR) and bounding chains used in conjunction with coupling from the past (CFTP) are two perfect simulation protocols which can be used to sample from a variety of unnormalized target distributions. This paper first examines and then implements these two protocols to sample from the hardcore gas process. We empirically determine the subset of the hardcore process's parameters for which these two algorithms run in polynomial time. Comparing the efficiency of these two algorithms, we find that PRAR runs much faster for small values of the hardcore process's parameter whereas the bounding chain approach is vastly superior for large values of the process's parameter.
4

Mean-Square Error Bounds and Perfect Sampling for Conditional Coding

Cui, Xiangchen 01 May 2000 (has links)
In this dissertation, new theoretical results are obtained for bounding convergence and mean-square error in conditional coding. Further new statistical methods for the practical application of conditional coding are developed. Criteria for the uniform convergence are first examined. Conditional coding Markov chains are aperiodic, π-irreducible, and Harris recurrent. By applying the general theories of uniform ergodicity of Markov chains on genera l state space, one can conclude that conditional coding Markov cha ins are uniformly ergodic and further, theoretical convergence rates based on Doeblin's condition can be found. Conditional coding Markov chains can be also viewed as having finite state space. This allows use of techniques to get bounds on the second largest eigenvalue which lead to bounds on convergence rate and the mean-square error of sample averages. The results are applied in two examples showing that these bounds are useful in practice. Next some algorithms for perfect sampling in conditional coding are studied. An application of exact sampling to the independence sampler is shown to be equivalent to standard rejection sampling. In case of single-site updating, traditional perfect sampling is not directly applicable when the state space has large cardinality and is not stochastically ordered, so a new procedure is developed that gives perfect samples at a predetermined confidence interval. In last chapter procedures and possibilities of applying conditional coding to mixture models are explored. Conditional coding can be used for analysis of a finite mixture model. This methodology is general and easy to use.
5

Exact Markov chain Monte Carlo and Bayesian linear regression

Bentley, Jason Phillip January 2009 (has links)
In this work we investigate the use of perfect sampling methods within the context of Bayesian linear regression. We focus on inference problems related to the marginal posterior model probabilities. Model averaged inference for the response and Bayesian variable selection are considered. Perfect sampling is an alternate form of Markov chain Monte Carlo that generates exact sample points from the posterior of interest. This approach removes the need for burn-in assessment faced by traditional MCMC methods. For model averaged inference, we find the monotone Gibbs coupling from the past (CFTP) algorithm is the preferred choice. This requires the predictor matrix be orthogonal, preventing variable selection, but allowing model averaging for prediction of the response. Exploring choices of priors for the parameters in the Bayesian linear model, we investigate sufficiency for monotonicity assuming Gaussian errors. We discover that a number of other sufficient conditions exist, besides an orthogonal predictor matrix, for the construction of a monotone Gibbs Markov chain. Requiring an orthogonal predictor matrix, we investigate new methods of orthogonalizing the original predictor matrix. We find that a new method using the modified Gram-Schmidt orthogonalization procedure performs comparably with existing transformation methods, such as generalized principal components. Accounting for the effect of using an orthogonal predictor matrix, we discover that inference using model averaging for in-sample prediction of the response is comparable between the original and orthogonal predictor matrix. The Gibbs sampler is then investigated for sampling when using the original predictor matrix and the orthogonal predictor matrix. We find that a hybrid method, using a standard Gibbs sampler on the orthogonal space in conjunction with the monotone CFTP Gibbs sampler, provides the fastest computation and convergence to the posterior distribution. We conclude the hybrid approach should be used when the monotone Gibbs CFTP sampler becomes impractical, due to large backwards coupling times. We demonstrate large backwards coupling times occur when the sample size is close to the number of predictors, or when hyper-parameter choices increase model competition. The monotone Gibbs CFTP sampler should be taken advantage of when the backwards coupling time is small. For the problem of variable selection we turn to the exact version of the independent Metropolis-Hastings (IMH) algorithm. We reiterate the notion that the exact IMH sampler is redundant, being a needlessly complicated rejection sampler. We then determine a rejection sampler is feasible for variable selection when the sample size is close to the number of predictors and using Zellner’s prior with a small value for the hyper-parameter c. Finally, we use the example of simulating from the posterior of c conditional on a model to demonstrate how the use of an exact IMH view-point clarifies how the rejection sampler can be adapted to improve efficiency.
6

Exact Markov chain Monte Carlo and Bayesian linear regression

Bentley, Jason Phillip January 2009 (has links)
In this work we investigate the use of perfect sampling methods within the context of Bayesian linear regression. We focus on inference problems related to the marginal posterior model probabilities. Model averaged inference for the response and Bayesian variable selection are considered. Perfect sampling is an alternate form of Markov chain Monte Carlo that generates exact sample points from the posterior of interest. This approach removes the need for burn-in assessment faced by traditional MCMC methods. For model averaged inference, we find the monotone Gibbs coupling from the past (CFTP) algorithm is the preferred choice. This requires the predictor matrix be orthogonal, preventing variable selection, but allowing model averaging for prediction of the response. Exploring choices of priors for the parameters in the Bayesian linear model, we investigate sufficiency for monotonicity assuming Gaussian errors. We discover that a number of other sufficient conditions exist, besides an orthogonal predictor matrix, for the construction of a monotone Gibbs Markov chain. Requiring an orthogonal predictor matrix, we investigate new methods of orthogonalizing the original predictor matrix. We find that a new method using the modified Gram-Schmidt orthogonalization procedure performs comparably with existing transformation methods, such as generalized principal components. Accounting for the effect of using an orthogonal predictor matrix, we discover that inference using model averaging for in-sample prediction of the response is comparable between the original and orthogonal predictor matrix. The Gibbs sampler is then investigated for sampling when using the original predictor matrix and the orthogonal predictor matrix. We find that a hybrid method, using a standard Gibbs sampler on the orthogonal space in conjunction with the monotone CFTP Gibbs sampler, provides the fastest computation and convergence to the posterior distribution. We conclude the hybrid approach should be used when the monotone Gibbs CFTP sampler becomes impractical, due to large backwards coupling times. We demonstrate large backwards coupling times occur when the sample size is close to the number of predictors, or when hyper-parameter choices increase model competition. The monotone Gibbs CFTP sampler should be taken advantage of when the backwards coupling time is small. For the problem of variable selection we turn to the exact version of the independent Metropolis-Hastings (IMH) algorithm. We reiterate the notion that the exact IMH sampler is redundant, being a needlessly complicated rejection sampler. We then determine a rejection sampler is feasible for variable selection when the sample size is close to the number of predictors and using Zellner’s prior with a small value for the hyper-parameter c. Finally, we use the example of simulating from the posterior of c conditional on a model to demonstrate how the use of an exact IMH view-point clarifies how the rejection sampler can be adapted to improve efficiency.
7

Simulation parfaite de réseaux fermés de files d’attente et génération aléatoire de structures combinatoires / Perfect sampling of closed queueing networks and random generation of combinatorial objects

Rovetta, Christelle 20 June 2017 (has links)
La génération aléatoire d'objets combinatoires est un problème qui se pose dans de nombreux domaines de recherche (réseaux de communications, physique statistique, informatique théorique, combinatoire, etc.). Couramment, la distribution des échantillons est définie comme la distribution stationnaire d'une chaîne de Markov ergodique. En 1996, Propp et Wilson ont proposé un algorithme permettant l'échantillonnage sans biais de la distribution stationnaire. Ce dernier appelé aussi algorithme de simulation parfaite, requiert la simulation en parallèle de tous les états possibles de la chaîne. Plusieurs stratégies ont été mises en œuvre afin de ne pas avoir à simuler toutes les trajectoires. Elles sont intrinsèquement liées à la structure de la chaîne considérée et reposent essentiellement sur la propriété de monotonie, la construction de processus bornants qui exploitent la structure de treillis de l'espace d'états ou le caractère local des transitions. Dans le domaine des réseaux de communications, on s'intéresse aux performances des réseaux de files d'attente. Ces derniers se distinguent en deux groupes : ceux dont la distribution stationnaire possède une forme produit qui est facile à évaluer par le calcul et les autres. Pour ce dernier groupe, on utilise la génération aléatoire pour l'évaluation de performances. De par la structure des chaînes qui leurs sont associées, les réseaux ouverts de files d'attente se prêtent bien à la simulation via l'algorithme de simulation parfaite mais pas les réseaux fermés. La difficulté réside dans la taille de l'espace des états qui est exponentielle en le nombre de files à laquelle s'ajoute une contrainte globale à savoir le nombre constant de clients. La contribution principale de cette thèse est une nouvelle structure de données appelée diagramme. Cette structure est inspirée de la programmation dynamique et introduit une nouvelle technique de construction de processus bornant. La première partie du manuscrit est consacrée à la mise en œuvre de l'algorithme de Propp et Wilson pour des réseaux fermés n'étant pas nécessairement à forme produit. La représentation des états par un diagramme et l'opération de transition pour le processus bornant a dès lors une complexité polynomiale en le nombre de files et de clients. Cette technique est ensuite étendue aux réseaux fermés multiclasses ainsi qu'aux réseaux possédant des synchronisations. Une spécification des ensembles d'objets pouvant être représentés par un diagramme ainsi que des algorithmes agissant sur cette structure de données sont également proposés dans cette thèse. La méthode de Botzmann est une autre technique de simulation sans biais. Basée sur la combinatoire analytique, elle permet l'échantillonnage uniforme d'objets appartenant à une même classe combinatoire. Elle est employée dans la seconde partie de cette thèse afin d'échantillonner la distribution stationnaire de réseaux fermés à forme produit et pour la génération des multi-ensembles de taille fixe. Dans ce cadre, les diagrammes sont une nouvelle fois mis à profit. Enfin, la troisième partie présente les logiciels découlant des travaux présentés tout au long de ce travail, et qui implémentent les diagrammes et mettent en œuvre la simulation parfaite de réseaux fermés de files d'attente. / Random generation of combinatorial objects is an important problem in many fields of research (communications networks, theoretical computing, combinatorics, statistical physics, ...). This often requires sampling the stationary distribution of an ergodic Markov chain. In 1996, Propp and Wilson introduced an algorithm to produce unbiased samples of the stationary distribution, also called a perfect sampling algorithm. It requires parallel simulation of all possible states of the chain. To avoid simulating all the trajectories, several strategies have been implemented. But they are related to the structure of the chain and require a monotonicity property, or a construction of a bounding chain that exploits the lattice structure of the state space or the local character of the transitions.In the field of communications networks, attention is paid to the performance of queueing networks, that can be distinguished into two groups: the networks that have a product form stationary distribution which is easy to compute. Random generation can be used for the others. Perfect sampling algorithms can be used for open queueing networks, thanks to the lattice structure of their state space. Unfortunately, that is not the case for closed queueing networks, due to the size of the state space which is exponential in the number of queues and a global constraint (a constant number of customers). The main contribution of this thesis is a new data structure called a diagram. It is inspired by dynamic programming and allows a new technique of construction of bounding processes. The first part of the manuscript is devoted to the implementation of the Propp and Wilson algorithm for closed queueing networks. The representation of a set of states by a diagram and the transition operation for the bounding process has a polynomial complexity in the number of queues and customers. This technique is extended to closed multi-class networks and to networks with synchronizations. Specification of sets of objects that can be represented by a diagram and generic algorithms that use this data structure are proposed in this manuscript. The Boltzmann method is another unbiased sampling technique. It is based on analytical combinatorics and produces uniform samples from objects that belong to the same combinatorial class. It is used in the second part of this thesis in order to sample the stationary distribution of closed networks with product form and for the generation of multisets of fixed cardinality. Diagrams are used again in this context. Finally, the third part presents the software produced during this thesis, implementing diagrams and perfect simulation of closed queueing networks.
8

Improved Perfect Slice Sampling

Hörmann, Wolfgang, Leydold, Josef January 2003 (has links) (PDF)
Perfect slice sampling is a method to turn Markov Chain Monte Carlo (MCMC) samplers into exact generators for independent random variates. The originally proposed method is rather slow and thus several improvements have been suggested. However, two of them are erroneous. In this article we give a short introduction to perfect slice sampling, point out incorrect methods, and give a new improved version of the original algorithm. (author's abstract) / Series: Preprint Series / Department of Applied Statistics and Data Processing

Page generated in 0.0939 seconds