• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Problèmes inverses dans les réseaux

Kauffmann, Bruno 24 March 2011 (has links) (PDF)
La croissance récente d'Internet lors deux dernières décennies a conduit à un besoin croissant de techniques permettant de mesurer la structure et la performance d'Internet. Les techniques de mesures de réseaux peuvent être classifiées en méthodes passives qui utilisent des données collectées au niveau des routeurs, et les méthodes actives, reposant sur l'injection active et l'observation de paquets-sondes. Les méthodes actives, qui sont la motivation principale de ce doctorat, sont particulièrement adaptées aux utilisateurs finaux, qui ne peuvent pas accéder aux données mesurées par les routeurs avec l'architecture actuelle d'Internet. Sur un autre plan, la théorie des réseaux se développe depuis un siècle, et de nombreux outils permettent de prédire la performance d'un système, en fonction de quelques paramètres clés. La théorie des files d'attentes émerge comme une solution particulièrement fructueuse, que ce soit pour les réseaux téléphoniques ou pour les réseaux filaires à commutation de paquet. Dans ce dernier cas, elle s'intéresse au mécanisme à l'échelle des paquets, et prédit des statistiques à ce niveau. À l'échelle des flots de paquets, la théorie des réseaux à partage de bande passante permet une abstraction de tout schéma d'allocation de bande passante, y compris le partage implicite résultant du protocole TCP. De nombreux travaux ont montré comment les résultats provenant de ces théories peuvent s'appliquer aux réseaux réels, et en particulier à Internet, et dans quels aspects le comportement de réseaux réels diffère des prédictions théoriques. Cependant, il y a eu peu de travaux établissant des liens entre le point de vue théorique d'un réseau et le problème pratique consistant à le mesurer. Le but de ce manuscrit est de bâtir quelques ponts entre le monde des méthodes de mesure par sondes actives et le monde de la théorie des réseaux. Nous adoptons l'approche des problèmes inverses, qui peuvent être vus en opposition aux problèmes directs. Un problème direct prédit l'évolution d'un système défini, en fonction des conditions initiales et d'une équation d'évolution connue. Un problème inverse observe une partie de la trajectoire d'un système défini, et cherche à estimer les conditions initiales ou paramètres pouvant conduire à cette trajectoire. Les données des méthodes de mesure par sondes actives sont les séries temporelles des pertes et délais des sondes, c'est-à-dire précisément une partie de la "trajectoire" d'un réseau. Ainsi, les méthodes de mesures par sondes actives peuvent être considérées comme des problèmes inverses pour une théorie des réseaux qui permettrait une prédiction exacte de l'évolution des réseaux. Nous montrons dans ce document comment les méthodes de mesures par sondes actives sont reliées aux problèmes inverses dans la théories des files d'attentes. Nous spécifions comment les contraintes de mesures peuvent être incluses dans les problèmes inverses, quels sont les observables, et détaillons les étapes successives pour un problème inverse dans la théorie des files d'attentes. Nous classifions les problèmes en trois catégories différentes, en fonction de la nature de leur résultat et de leur généralité, et donnons des exemples simples pour illustrer leurs différentes propriétés. Nous étudions en détail un problème inverse spécifique, où le réseau se comporte comme un réseau dit "de Kelly" avecK serveurs en tandem. Dans ce cas précis, nous calculons explicitement la distribution des délais de bout en bout des sondes, en fonction des capacités résiduelles des serveurs et de l'intensité des sondes. Nous montrons que l'ensemble des capacités résiduelles peut être estimé à partir du délai moyen des sondes pour K intensités de sondes différentes. Nous proposons une méthodes d'inversion alternative, à partir de la distribution des délais des sondes pour une seule intensité de sonde. Dans le cas à deux serveurs, nous donnons une caractérisation directe de l'estimateur du maximum de vraisemblance des capacités résiduelles. Dans le cas général, nous utilisons l'algorithme Espérance-Maximisation (E-M). Nous prouvons que dans le cas à deux serveurs, la suite des estimations de E-M converge vers une limite finie, qui est une solution de l'équation de vraisemblance. Nous proposons une formule explicite pour le calcul de l'itération quand K = 2 ou K = 3, et prouvons que la formule reste calculable quelque soit le nombre de serveurs. Nous évaluons ces techniques numériquement. À partir de simulations utilisant des traces d'un réseau réel, nous étudions indépendamment l'impact de chacune des hypothèses d'un réseau de Kelly sur les performances de l'estimateur, et proposons des facteurs de correction simples si besoin. Nous étendons l'exemple précédant au cas des réseaux en forme d'arbre. Les sondes sont multicast, envoyées depuis la racine et à destination des feuilles. À chaque noeud, elles attendent un temps aléatoire distribué de façon exponentielle. Nous montrons que ce modèle est relié au modèle des réseaux de Kelly sur une topologie d'arbre, avec du trafic transverse unicast et des sondes multicast, et calculons une formule explicite pour la vraisemblance des délais joints. Nous utilisons l'algorithme E-M pour calculer l'estimateur de vraisemblance du délai moyen à chaque noeud, et calculons une formule explicite pour la combinaison des étapes E et M. Des simulations numériques illustrent la convergence de l'estimateur et ses propriétés. Face à la complexité de l'algorithme, nous proposons une technique d'accélération de convergence, permettant ainsi de considérer des arbres beaucoup plus grands. Cette technique contient des aspects innovant dont l'intérêt peut dépasser le cadre de ces travaux. Finalement, nous explorons le cas des problèmes inverses dans la théorie des réseaux à partage de bande passante. À partir de deux exemples simples, nous montrons comment un sondeur peut mesurer le réseau en faisant varier le nombre de flots de sondes, et en mesurant le débit associé aux flots dans chaque cas. En particulier, si l'allocation de bande passante maximise une fonction d'utilité -équitable, l'ensemble des capacités des réseaux et leur nombre de connections associé peut être identifié de manière unique dans la plupart des cas. Nous proposons un algorithme pour effectuer cette inversion, avec des exemples illustrant ses propriétés numériques.
2

Simulation parfaite de réseaux fermés de files d’attente et génération aléatoire de structures combinatoires / Perfect sampling of closed queueing networks and random generation of combinatorial objects

Rovetta, Christelle 20 June 2017 (has links)
La génération aléatoire d'objets combinatoires est un problème qui se pose dans de nombreux domaines de recherche (réseaux de communications, physique statistique, informatique théorique, combinatoire, etc.). Couramment, la distribution des échantillons est définie comme la distribution stationnaire d'une chaîne de Markov ergodique. En 1996, Propp et Wilson ont proposé un algorithme permettant l'échantillonnage sans biais de la distribution stationnaire. Ce dernier appelé aussi algorithme de simulation parfaite, requiert la simulation en parallèle de tous les états possibles de la chaîne. Plusieurs stratégies ont été mises en œuvre afin de ne pas avoir à simuler toutes les trajectoires. Elles sont intrinsèquement liées à la structure de la chaîne considérée et reposent essentiellement sur la propriété de monotonie, la construction de processus bornants qui exploitent la structure de treillis de l'espace d'états ou le caractère local des transitions. Dans le domaine des réseaux de communications, on s'intéresse aux performances des réseaux de files d'attente. Ces derniers se distinguent en deux groupes : ceux dont la distribution stationnaire possède une forme produit qui est facile à évaluer par le calcul et les autres. Pour ce dernier groupe, on utilise la génération aléatoire pour l'évaluation de performances. De par la structure des chaînes qui leurs sont associées, les réseaux ouverts de files d'attente se prêtent bien à la simulation via l'algorithme de simulation parfaite mais pas les réseaux fermés. La difficulté réside dans la taille de l'espace des états qui est exponentielle en le nombre de files à laquelle s'ajoute une contrainte globale à savoir le nombre constant de clients. La contribution principale de cette thèse est une nouvelle structure de données appelée diagramme. Cette structure est inspirée de la programmation dynamique et introduit une nouvelle technique de construction de processus bornant. La première partie du manuscrit est consacrée à la mise en œuvre de l'algorithme de Propp et Wilson pour des réseaux fermés n'étant pas nécessairement à forme produit. La représentation des états par un diagramme et l'opération de transition pour le processus bornant a dès lors une complexité polynomiale en le nombre de files et de clients. Cette technique est ensuite étendue aux réseaux fermés multiclasses ainsi qu'aux réseaux possédant des synchronisations. Une spécification des ensembles d'objets pouvant être représentés par un diagramme ainsi que des algorithmes agissant sur cette structure de données sont également proposés dans cette thèse. La méthode de Botzmann est une autre technique de simulation sans biais. Basée sur la combinatoire analytique, elle permet l'échantillonnage uniforme d'objets appartenant à une même classe combinatoire. Elle est employée dans la seconde partie de cette thèse afin d'échantillonner la distribution stationnaire de réseaux fermés à forme produit et pour la génération des multi-ensembles de taille fixe. Dans ce cadre, les diagrammes sont une nouvelle fois mis à profit. Enfin, la troisième partie présente les logiciels découlant des travaux présentés tout au long de ce travail, et qui implémentent les diagrammes et mettent en œuvre la simulation parfaite de réseaux fermés de files d'attente. / Random generation of combinatorial objects is an important problem in many fields of research (communications networks, theoretical computing, combinatorics, statistical physics, ...). This often requires sampling the stationary distribution of an ergodic Markov chain. In 1996, Propp and Wilson introduced an algorithm to produce unbiased samples of the stationary distribution, also called a perfect sampling algorithm. It requires parallel simulation of all possible states of the chain. To avoid simulating all the trajectories, several strategies have been implemented. But they are related to the structure of the chain and require a monotonicity property, or a construction of a bounding chain that exploits the lattice structure of the state space or the local character of the transitions.In the field of communications networks, attention is paid to the performance of queueing networks, that can be distinguished into two groups: the networks that have a product form stationary distribution which is easy to compute. Random generation can be used for the others. Perfect sampling algorithms can be used for open queueing networks, thanks to the lattice structure of their state space. Unfortunately, that is not the case for closed queueing networks, due to the size of the state space which is exponential in the number of queues and a global constraint (a constant number of customers). The main contribution of this thesis is a new data structure called a diagram. It is inspired by dynamic programming and allows a new technique of construction of bounding processes. The first part of the manuscript is devoted to the implementation of the Propp and Wilson algorithm for closed queueing networks. The representation of a set of states by a diagram and the transition operation for the bounding process has a polynomial complexity in the number of queues and customers. This technique is extended to closed multi-class networks and to networks with synchronizations. Specification of sets of objects that can be represented by a diagram and generic algorithms that use this data structure are proposed in this manuscript. The Boltzmann method is another unbiased sampling technique. It is based on analytical combinatorics and produces uniform samples from objects that belong to the same combinatorial class. It is used in the second part of this thesis in order to sample the stationary distribution of closed networks with product form and for the generation of multisets of fixed cardinality. Diagrams are used again in this context. Finally, the third part presents the software produced during this thesis, implementing diagrams and perfect simulation of closed queueing networks.

Page generated in 0.0858 seconds