• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A minimum cost and risk mitigation approach for blood collection

Zeng, Chenxi 27 May 2016 (has links)
Due to the limited supply and perishable nature of blood products, effective management of blood collection is critical for high quality healthcare delivery. Whole blood is typically collected over a 6 to 8 hour collection window from volunteer donors at sites, e.g., schools, universities, churches, companies, that are a significant distance from the blood products processing facility and then transported from collection site to processing facility by a blood mobile. The length of time between collecting whole blood and processing it into cryoprecipitate ("cryo"), a critical blood product for controlling massive hemorrhaging, cannot take longer than 8 hours (the 8 hour collection to completion constraint), while the collection to completion constraint for other blood products is 24 hours. In order to meet the collection to completion constraint for cryo, it is often necessary to have a "mid-drive collection"; i.e., for a vehicle other than the blood mobile to pickup and transport, at extra cost, whole blood units collected during early in the collection window to the processing facility. In this dissertation, we develop analytical models to: (1) analyze which collection sites should be designated as cryo collection sites to minimize total collection costs while satisfying the collection to completion constraint and meeting the weekly production target (the non-split case), (2) analyze the impact of changing the current process to allow collection windows to be split into two intervals and then determining which intervals should be designated as cryo collection intervals (the split case), (3) insure that the weekly production target is met with high probability. These problems lead to MDP models with large state and action spaces and constraints to guarantee that the weekly production target is met with high probability. These models are computationally intractable for problems having state and action spaces of realistic cardinality. We consider two approaches to guarantee that the weekly production target is met with high probability: (1) a penalty function approach and (2) a chance constraint approach. For the MDP with penalty function approach, we first relax a constraint that significantly reduces the cardinality of the state space and provides a lower bound on the optimal expected weekly cost of collecting whole blood for cryo while satisfying the collection to completion constraint. We then present an action elimination procedure that coupled with the constraint relaxation leads to a computationally tractable lower bound. We then develop several heuristics that generate sub-optimal policies and provide an analytical description of the difference between the upper and lower bounds in order to determine the quality of the heuristics. For the multiple decision epoch MDP model with chance constraint approach, we first note by example that a straightforward application of dynamic programming can lead to a sub-optimal policy. We then restrict the model to a single decision epoch. We then use a computationally tractable rolling horizon procedure for policy determination. We also present a simple greedy heuristic (another rolling horizon decision making procedure) based on ranking the collection intervals by mid-drive pickup cost per unit of expected cryo collected, which results in a competitive sub-optimal solution and leads to the development of a practical decision support tool (DST). Using real data from the American Red Cross (ARC), we estimate that this DST reduces total cost by about 30% for the non-split case and 70% for the split case, compared to the current practice. Initial implementation of the DST at the ARC Southern regional manufacturing and service center supports our estimates and indicates the potential for significant improvement in current practice.
2

Un mécanisme constructiviste d'apprentissage automatique, d'anticipations pour des agents artificiels situés / A Constructivist Anticipatory Learning Mechanism for Situated Artificial Agents

Studzinski Perotto, Filipo 11 June 2010 (has links)
Cette recherche se caractérise, premièrement, par une discussion théorique sur le concept d'agent autonome, basée sur des éléments issus des paradigmes de l'Intelligence Artificielle Située et de l'Intelligence Artificielle Affective. Ensuite, cette thèse présente le problème de l'apprentissage de modèles du monde, en passant en revue la littérature concernant les travaux qui s'y rapportent. A partir de ces discussions, l'architecture CAES et le mécanisme CALM sont présentes. CAES (Coupled Agent-Environment System) constitue une architecture pour décrire des systèmes bases sur la dichotomie agent-environnement. Il définit l'agent et l'environnement comme deux systèmes partiellement ouverts, en couplage dynamique. Dans CAES, l'agent est compose de deux sous-systèmes, l'esprit et le corps, suivant les principes de la situativite et de la motivation intrinsèque. CALM (Constructivist Anticipatory Learning Mechanism) est un mécanisme d'apprentissage fonde sur l'approche constructiviste de l'Intelligence Artificielle. Il permet a un agent situe de construire un modèle du monde dans des environnements partiellement observables et partiellement déterministes, sous la forme d'un processus de décision markovien partiellement observable et factorise (FPOMDP). Le modèle du monde construit est ensuite utilise pour que l'agent puisse définir une politique d'action visant à améliorer sa propre performance / This research is characterized, first, by a theoretical discussion on the concept of autonomous agent, based on elements taken from the Situated AI and the Affective AI paradigms. Secondly, this thesis presents the problem of learning world models, providing a bibliographic review regarding some related works. From these discussions, the CAES architecture and the CALM mechanism are presented. The CAES (Coupled Agent-Environment System) is an architecture for describing systems based on the agent-environment dichotomy. It defines the agent and the environment as two partially open systems, in dynamic coupling. In CAES, the agent is composed of two sub-systems, mind and body, following the principles of situativity and intrinsic motivation. CALM (Constructivist Learning Anticipatory Mechanism) is based on the constructivist approach to Artificial Intelligence. It allows a situated agent to build a model of the world in environments partially deterministic and partially observable in the form of Partially Observable and Factored Markov Decision Process (FPOMDP). The model of the world is constructed and used for the agent to define a policy for action in order to improve its own performance
3

Um mecanismo construtivista para aprendizagem de antecipações em agentes artificiais situados / Un mecanisme constructiviste d'apprentissage automatique d'anticipations pour des agents artificiels situes / A constructivist anticipatory learning mechanism for situated artificial agents

Perotto, Filipo Studzinski January 2010 (has links)
Cette recherche se caractérise, premièrement, par une discussion théorique sur le concept d'agent autonome, basée sur des éléments issus des paradigmes de l'Intelligence Artificielle Située et de l'Intelligence Artificielle Affective. Ensuite, cette thèse présente le problème de l'apprentissage de modèles du monde, en passant en revue la littérature concernant les travaux qui s'y rapportent. À partir de ces discussions, l'architecture CAES et le mécanisme CALM sont présentés. CAES (Coupled Agent-Environment System) constitue une architecture pour décrire des systèmes basés sur la dichotomie agent-environnement. Il définit l'agent et l'environnement comme deux systèmes partiellement ouverts, en couplage dynamique. L'agent, à son tour, est composé de deux sous-systèmes, l'esprit et le corps, suivant les principes de la situativité et de la motivation intrinsèque. CALM (Constructivist Anticipatory Learning Mechanism) est un mécanisme d'apprentissage fondé sur l'approche constructiviste de l'Intelligence Artificielle. Il permet à un agent situé de construire un modèle du monde dans des environnements partiellement observables et partiellement déterministes, sous la forme d'un processus de décision markovien partiellement observable et factorisé (FPOMDP). Le modèle du monde construit est ensuite utilisé pour que l'agent puisse définir une politique d'action visant à améliorer sa propre performance. / Esta pesquisa caracteriza-se, primeiramente, pela condução de uma discussão teórica sobre o conceito de agente autônomo, baseada em elementos provenientes dos paradigmas da Inteligência Artificial Situada e da Inteligência Artificial Afetiva. A seguir, a tese apresenta o problema da aprendizagem de modelos de mundo, fazendo uma revisão bibliográfica a respeito de trabalhos relacionados. A partir dessas discussões, a arquitetura CAES e o mecanismo CALM são apresentados. O CAES (Coupled Agent-Environment System) é uma arquitetura para a descrição de sistemas baseados na dicotomia agente-ambiente. Ele define agente e ambiente como dois sistemas parcialmente abertos, em acoplamento dinâmico. O agente, por sua vez, é composto por dois subsistemas, mente e corpo, seguindo os princípios de situatividade e motivação intrínseca. O CALM (Constructivist Anticipatory Learning Mechanism) é um mecanismo de aprendizagem fundamentado na abordagem construtivista da Inteligência Artificial. Ele permite que um agente situado possa construir um modelo de mundo em ambientes parcialmente observáveis e parcialmente determinísticos, na forma de um Processo de Decisão de Markov Parcialmente Observável e Fatorado (FPOMDP). O modelo de mundo construído é então utilizado para que o agente defina uma política de ações a fim de melhorar seu próprio desempenho. / This research is characterized, first, by a theoretical discussion on the concept of autonomous agent, based on elements taken from the Situated AI and the Affective AI paradigms. Secondly, this thesis presents the problem of learning world models, providing a bibliographic review regarding some related works. From these discussions, the CAES architecture and the CALM mechanism are presented. The CAES (Coupled Agent-Environment System) is an architecture for describing systems based on the agent-environment dichotomy. It defines the agent and the environment as two partially open systems, in dynamic coupling. The agent is composed of two sub-systems, mind and body, following the principles of situativity and intrinsic motivation. CALM (Constructivist Learning Anticipatory Mechanism) is based on the constructivist approach to Artificial Intelligence. It allows a situated agent to build a model of the world in environments partially deterministic and partially observable in the form of Partially Observable and Factored Markov Decision Process (FPOMDP). The model of the world is constructed and used for the agent to define a policy for action in order to improve its own performance.
4

Um mecanismo construtivista para aprendizagem de antecipações em agentes artificiais situados / Un mecanisme constructiviste d'apprentissage automatique d'anticipations pour des agents artificiels situes / A constructivist anticipatory learning mechanism for situated artificial agents

Perotto, Filipo Studzinski January 2010 (has links)
Cette recherche se caractérise, premièrement, par une discussion théorique sur le concept d'agent autonome, basée sur des éléments issus des paradigmes de l'Intelligence Artificielle Située et de l'Intelligence Artificielle Affective. Ensuite, cette thèse présente le problème de l'apprentissage de modèles du monde, en passant en revue la littérature concernant les travaux qui s'y rapportent. À partir de ces discussions, l'architecture CAES et le mécanisme CALM sont présentés. CAES (Coupled Agent-Environment System) constitue une architecture pour décrire des systèmes basés sur la dichotomie agent-environnement. Il définit l'agent et l'environnement comme deux systèmes partiellement ouverts, en couplage dynamique. L'agent, à son tour, est composé de deux sous-systèmes, l'esprit et le corps, suivant les principes de la situativité et de la motivation intrinsèque. CALM (Constructivist Anticipatory Learning Mechanism) est un mécanisme d'apprentissage fondé sur l'approche constructiviste de l'Intelligence Artificielle. Il permet à un agent situé de construire un modèle du monde dans des environnements partiellement observables et partiellement déterministes, sous la forme d'un processus de décision markovien partiellement observable et factorisé (FPOMDP). Le modèle du monde construit est ensuite utilisé pour que l'agent puisse définir une politique d'action visant à améliorer sa propre performance. / Esta pesquisa caracteriza-se, primeiramente, pela condução de uma discussão teórica sobre o conceito de agente autônomo, baseada em elementos provenientes dos paradigmas da Inteligência Artificial Situada e da Inteligência Artificial Afetiva. A seguir, a tese apresenta o problema da aprendizagem de modelos de mundo, fazendo uma revisão bibliográfica a respeito de trabalhos relacionados. A partir dessas discussões, a arquitetura CAES e o mecanismo CALM são apresentados. O CAES (Coupled Agent-Environment System) é uma arquitetura para a descrição de sistemas baseados na dicotomia agente-ambiente. Ele define agente e ambiente como dois sistemas parcialmente abertos, em acoplamento dinâmico. O agente, por sua vez, é composto por dois subsistemas, mente e corpo, seguindo os princípios de situatividade e motivação intrínseca. O CALM (Constructivist Anticipatory Learning Mechanism) é um mecanismo de aprendizagem fundamentado na abordagem construtivista da Inteligência Artificial. Ele permite que um agente situado possa construir um modelo de mundo em ambientes parcialmente observáveis e parcialmente determinísticos, na forma de um Processo de Decisão de Markov Parcialmente Observável e Fatorado (FPOMDP). O modelo de mundo construído é então utilizado para que o agente defina uma política de ações a fim de melhorar seu próprio desempenho. / This research is characterized, first, by a theoretical discussion on the concept of autonomous agent, based on elements taken from the Situated AI and the Affective AI paradigms. Secondly, this thesis presents the problem of learning world models, providing a bibliographic review regarding some related works. From these discussions, the CAES architecture and the CALM mechanism are presented. The CAES (Coupled Agent-Environment System) is an architecture for describing systems based on the agent-environment dichotomy. It defines the agent and the environment as two partially open systems, in dynamic coupling. The agent is composed of two sub-systems, mind and body, following the principles of situativity and intrinsic motivation. CALM (Constructivist Learning Anticipatory Mechanism) is based on the constructivist approach to Artificial Intelligence. It allows a situated agent to build a model of the world in environments partially deterministic and partially observable in the form of Partially Observable and Factored Markov Decision Process (FPOMDP). The model of the world is constructed and used for the agent to define a policy for action in order to improve its own performance.
5

Um mecanismo construtivista para aprendizagem de antecipações em agentes artificiais situados / Un mecanisme constructiviste d'apprentissage automatique d'anticipations pour des agents artificiels situes / A constructivist anticipatory learning mechanism for situated artificial agents

Perotto, Filipo Studzinski January 2010 (has links)
Cette recherche se caractérise, premièrement, par une discussion théorique sur le concept d'agent autonome, basée sur des éléments issus des paradigmes de l'Intelligence Artificielle Située et de l'Intelligence Artificielle Affective. Ensuite, cette thèse présente le problème de l'apprentissage de modèles du monde, en passant en revue la littérature concernant les travaux qui s'y rapportent. À partir de ces discussions, l'architecture CAES et le mécanisme CALM sont présentés. CAES (Coupled Agent-Environment System) constitue une architecture pour décrire des systèmes basés sur la dichotomie agent-environnement. Il définit l'agent et l'environnement comme deux systèmes partiellement ouverts, en couplage dynamique. L'agent, à son tour, est composé de deux sous-systèmes, l'esprit et le corps, suivant les principes de la situativité et de la motivation intrinsèque. CALM (Constructivist Anticipatory Learning Mechanism) est un mécanisme d'apprentissage fondé sur l'approche constructiviste de l'Intelligence Artificielle. Il permet à un agent situé de construire un modèle du monde dans des environnements partiellement observables et partiellement déterministes, sous la forme d'un processus de décision markovien partiellement observable et factorisé (FPOMDP). Le modèle du monde construit est ensuite utilisé pour que l'agent puisse définir une politique d'action visant à améliorer sa propre performance. / Esta pesquisa caracteriza-se, primeiramente, pela condução de uma discussão teórica sobre o conceito de agente autônomo, baseada em elementos provenientes dos paradigmas da Inteligência Artificial Situada e da Inteligência Artificial Afetiva. A seguir, a tese apresenta o problema da aprendizagem de modelos de mundo, fazendo uma revisão bibliográfica a respeito de trabalhos relacionados. A partir dessas discussões, a arquitetura CAES e o mecanismo CALM são apresentados. O CAES (Coupled Agent-Environment System) é uma arquitetura para a descrição de sistemas baseados na dicotomia agente-ambiente. Ele define agente e ambiente como dois sistemas parcialmente abertos, em acoplamento dinâmico. O agente, por sua vez, é composto por dois subsistemas, mente e corpo, seguindo os princípios de situatividade e motivação intrínseca. O CALM (Constructivist Anticipatory Learning Mechanism) é um mecanismo de aprendizagem fundamentado na abordagem construtivista da Inteligência Artificial. Ele permite que um agente situado possa construir um modelo de mundo em ambientes parcialmente observáveis e parcialmente determinísticos, na forma de um Processo de Decisão de Markov Parcialmente Observável e Fatorado (FPOMDP). O modelo de mundo construído é então utilizado para que o agente defina uma política de ações a fim de melhorar seu próprio desempenho. / This research is characterized, first, by a theoretical discussion on the concept of autonomous agent, based on elements taken from the Situated AI and the Affective AI paradigms. Secondly, this thesis presents the problem of learning world models, providing a bibliographic review regarding some related works. From these discussions, the CAES architecture and the CALM mechanism are presented. The CAES (Coupled Agent-Environment System) is an architecture for describing systems based on the agent-environment dichotomy. It defines the agent and the environment as two partially open systems, in dynamic coupling. The agent is composed of two sub-systems, mind and body, following the principles of situativity and intrinsic motivation. CALM (Constructivist Learning Anticipatory Mechanism) is based on the constructivist approach to Artificial Intelligence. It allows a situated agent to build a model of the world in environments partially deterministic and partially observable in the form of Partially Observable and Factored Markov Decision Process (FPOMDP). The model of the world is constructed and used for the agent to define a policy for action in order to improve its own performance.
6

Online Resource Allocation in Dynamic Optical Networks

Romero Reyes, Ronald 13 May 2019 (has links)
Konventionelle, optische Transportnetze haben die Bereitstellung von High-Speed-Konnektivität in Form von langfristig installierten Verbindungen konstanter Bitrate ermöglicht. Die Einrichtungszeiten solcher Verbindungen liegen in der Größenordnung von Wochen, da in den meisten Fällen manuelle Eingriffe erforderlich sind. Nach der Installation bleiben die Verbindungen für Monate oder Jahre aktiv. Das Aufkommen von Grid Computing und Cloud-basierten Diensten bringt neue Anforderungen mit sich, die von heutigen optischen Transportnetzen nicht mehr erfüllt werden können. Dies begründet die Notwendigkeit einer Umstellung auf dynamische, optische Netze, welche die kurzfristige Bereitstellung von Bandbreite auf Nachfrage (Bandwidth on Demand - BoD) ermöglichen. Diese Netze müssen Verbindungen mit unterschiedlichen Bitratenanforderungen, mit zufälligen Ankunfts- und Haltezeiten und stringenten Einrichtungszeiten realisieren können. Grid Computing und Cloud-basierte Dienste führen in manchen Fällen zu Verbindungsanforderungen mit Haltezeiten im Bereich von Sekunden, wobei die Einrichtungszeiten im Extremfall in der Größenordnung von Millisekunden liegen können. Bei optischen Netzen für BoD muss der Verbindungsaufbau und -abbau, sowie das Netzmanagement ohne manuelle Eingriffe vonstattengehen. Die dafür notwendigen Technologien sind Flex-Grid-Wellenlängenmultiplexing, rekonfigurierbare optische Add / Drop-Multiplexer (ROADMs) und bandbreitenvariable, abstimmbare Transponder. Weiterhin sind Online-Ressourcenzuweisungsmechanismen erforderlich, um für jede eintreffende Verbindungsanforderung abhängig vom aktuellen Netzzustand entscheiden zu können, ob diese akzeptiert werden kann und welche Netzressourcen hierfür reserviert werden. Dies bedeutet, dass die Ressourcenzuteilung als Online-Optimierungsproblem behandelt werden muss. Die Entscheidungen sollen so getroffen werden, dass auf lange Sicht ein vorgegebenes Optimierungsziel erreicht wird. Die Ressourcenzuweisung bei dynamischen optischen Netzen lässt sich in die Teilfunktionen Routing- und Spektrumszuteilung (RSA), Verbindungsannahmekontrolle (CAC) und Dienstgütesteuerung (GoS Control) untergliedern. In dieser Dissertation wird das Problem der Online-Ressourcenzuteilung in dynamischen optischen Netzen behandelt. Es wird die Theorie der Markov-Entscheidungsprozesse (MDP) angewendet, um die Ressourcenzuweisung als Online-Optimierungsproblem zu formulieren. Die MDP-basierte Formulierung hat zwei Vorteile. Zum einen lassen sich verschiedene Optimierungszielfunktionen realisieren (z.B. die Minimierung der Blockierungswahrscheinlichkeiten oder die Maximierung der wirtschaftlichen Erlöse). Zum anderen lässt sich die Dienstgüte von Gruppen von Verbindungen mit spezifischen Verkehrsparametern gezielt beeinflussen (und damit eine gewisse GoS-Steuerung realisieren). Um das Optimierungsproblem zu lösen, wird in der Dissertation ein schnelles, adaptives und zustandsabhängiges Verfahren vorgestellt, dass im realen Netzbetrieb rekursiv ausgeführt wird und die Teilfunktionen RSA und CAC umfasst. Damit ist das Netz in der Lage, für jede eintreffende Verbindungsanforderung eine optimale Ressourcenzuweisung zu bestimmen. Weiterhin wird in der Dissertation die Implementierung des Verfahrens unter Verwendung eines 3-Way-Handshake-Protokolls für den Verbindungsaufbau betrachtet und ein analytisches Modell vorgestellt, um die Verbindungsaufbauzeit abzuschätzen. Die Arbeit wird abgerundet durch eine Bewertung der Investitionskosten (CAPEX) von dynamischen optischen Netzen. Es werden die wichtigsten Kostenfaktoren und die Beziehung zwischen den Kosten und der Performanz des Netzes analysiert. Die Leistungsfähigkeit aller in der Arbeit vorgeschlagenen Verfahren sowie die Genauigkeit des analytischen Modells zur Bestimmung der Verbindungsaufbauzeit wird durch umfangreiche Simulationen nachgewiesen. / Conventional optical transport networks have leveraged the provisioning of high-speed connectivity in the form of long-term installed, constant bit-rate connections. The setup times of such connections are in the order of weeks, given that in most cases manual installation is required. Once installed, connections remain active for months or years. The advent of grid computing and cloud-based services brings new connectivity requirements which cannot be met by the present-day optical transport network. This has raised awareness on the need for a changeover to dynamic optical networks that enable the provisioning of bandwidth on demand (BoD) in the optical domain. These networks will have to serve connections with different bit-rate requirements, with random interarrival times and durations, and with stringent setup latencies. Ongoing research has shown that grid computing and cloud-based services may in some cases request connections with holding times ranging from seconds to hours, and with setup latencies that must be in the order of milliseconds. To provide BoD, dynamic optical networks must perform connection setup, maintenance and teardown without manual labour. For that, software-configurable networks are needed that are deployed with enough capacity to automatically establish connections. Recently, network architectures have been proposed for that purpose that embrace flex-grid wavelength division multiplexing, reconfigurable optical add/drop multiplexers, and bandwidth variable and tunable transponders as the main technology drivers. To exploit the benefits of these technologies, online resource allocation methods are necessary to ensure that during network operation the installed capacity is efficiently assigned to connections. As connections may arrive and depart randomly, the traffic matrix is unknown, and hence, each connection request submitted to the network has to be processed independently. This implies that resource allocation must be tackled as an online optimization problem which for each connection request, depending on the network state, decides whether the request is admitted or rejected. If admitted, a further decision is made on which resources are assigned to the connection. The decisions are so calculated that, in the long-run, a desired performance objective is optimized. To achieve its goal, resource allocation implements control functions for routing and spectrum allocation (RSA), connection admission control (CAC), and grade of service (GoS) control. In this dissertation we tackle the problem of online resource allocation in dynamic optical networks. For that, the theory of Markov decision processes (MDP) is applied to formulate resource allocation as an online optimization problem. An MDP-based formulation has two relevant advantages. First, the problem can be solved to optimize an arbitrarily defined performance objective (e.g. minimization of blocking probability or maximization of economic revenue). Secondly, it can provide GoS control for groups of connections with different statistical properties. To solve the optimization problem, a fast, adaptive and state-dependent online algorithm is proposed to calculate a resource allocation policy. The calculation is performed recursively during network operation, and uses algorithms for RSA and CAC. The resulting policy is a course of action that instructs the network how to process each connection request. Furthermore, an implementation of the method is proposed that uses a 3-way handshake protocol for connection setup, and an analytical performance evaluation model is derived to estimate the connection setup latency. Our study is complemented by an evaluation of the capital expenditures of dynamic optical networks. The main cost drivers are identified. The performance of the methods proposed in this thesis, including the accuracy of the analytical evaluation of the connection setup latency, were evaluated by simulations. The contributions from the thesis provide a novel approach that meets the requirements envisioned for resource allocation in dynamic optical networks.

Page generated in 0.0855 seconds