Spelling suggestions: "subject:"masonry."" "subject:"mansonry.""
61 |
Conservation and seismic strengthening of architecutural heritage : Byzantine churches of the ninth till the fourteenth centuries in MacedoniaSumanov, Lazar January 1999 (has links)
No description available.
|
62 |
The development of a seismic risk reduction procedure for the prioritization of low cost, load bearing masonry buildingsDe la Harpe, Charles William Henry 03 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: The Western Cape is one of the most seismically active regions in South Africa. It features
geological properties which can develop earthquakes as large as 6.87 on the Richter scale.
This poses a serious threat to all of the buildings that are currently located within this
region.
A recent study has found that typical three-storey Unreinforced Masonry (URM) buildings
in the Cape Town area shows a high probability of failure or damage if subjected to such
a large earthquake. Many of these buildings can be found in an area of Cape Town called
the Cape Flats, housing approximately 11 000 individuals. The structural integrity of these
buildings are of concern to engineers since it houses a number of individuals.
The purpose of the study was to develop a risk assessment procedure that could be used to
assess low-rise multi-storey (2, 3 and 4 storeys) URM buildings in order to determine where
the risk of earthquake related damage would be the highest. The risk assessment procedure
compared various characteristics regarding the buildings, residents, seismic attributes of the
region and the recovery capability of the residents.
The result, in the form of a risk rating, enabled the buildings to be prioritized according to
their seismic risk. The aim was to develop a comparative model which could be applied to
a range of buildings, indicating where the impact of an earthquake would be greatest. This
result could then be used for further remedial action (such as retrofitting) where it is needed
the most.
The risk assessment procedure used an Earthquake Risk Assessment Model (ERAM) which
was specifically developed to assess the earthquake risk of each building with the use of 26
factors. These factors would each be individually scored and through the ERAM model
would produce a risk rating. The buildings' can then be ranked (prioritized) according to
it's risk rating to determine where remedial actions or procedures are needed first. / AFRIKAANSE OPSOMMING: Die Wes-Kaap is een van die mees seismiese aktiewe streke in Suid-Afrika. Dit bevat geologiese
eienskappe wat aardbewings met groottes van 6,87 op die Richterskaal kan laat
ontwikkel (1 in 475 jaar herhaal periode). Dit hou 'n bedreiging vir baie die geboue wat tans
in hierdie streek geleë is.
'n Onlangse studie het bevind dat tipiese drie-verdieping lasdraende steengeboue in die
omgewing van Kaapstad 'n hoë waarskynlikheid van faling of skade toon as dit blootgestel
word aan 'n groot aardbewing. Baie van hierdie geboue kan gevind word in 'n gebied van
Kaapstad genaamd die Kaapse Vlakte, wat vir ongeveer 11 000 individue behuising bied.
Die strukturele integriteit van hierdie geboue is van belang aangesien dit 'n groot aantal
individue huisves.
Die doel van die studie was om 'n risiko-evaluerings proses te ontwikkel wat gebruik kan word
om multi-verdieping (2, 3 en 4 verdiepings) lasdraende steengeboue te evalueer ten opsigte
van aardbewing verwante skade. Die risiko-evaluering proses vergelyk verskeie kenmerke van
die geboue, die inwoners, seismiese eienskappe van die streek en die vermoë van die inwoners
om terug te keer na hul alledaagse leefstyl.
Die resultaat is in die vorm van 'n risiko-gradering, wat die gebruiker in staat stel om die
geboue te prioritiseer volgens hul aardbewings risiko. Die doel was om 'n vergelykende model
te ontwikkel wat toegepas kan word om 'n verskeidenheid van geboue te evalueer, en aan
te dui waar die impak van 'n aardbewing die grootste sal wees. Hierdie resultaat kan dan
gebruik word vir verdere remediërende optrede of prosedures soos versterkings.
Die risiko-evaluerings proses gebruik 'n "Earthquake Risk Assessment Model" (ERAM) wat
spesifiek ontwikkel is om die aardbewings-risiko van elke gebou te evalueer met die gebruik
van 26 faktore. Hierdie faktore word elkeen individueel beoordeel en 'n risiko-gradering word
verkry met behulp van die ERAM model. Die geboue kan dan geprioritiseer word volgens
elkeen se risiko-gradering om te bepaal waar daar remediërende optrede nodig is.
|
63 |
Modélisation des murs en maçonnerie sous sollicitations sismiques / Modelling of masonry walls under seismic loadingsGodio, Michele 30 November 2015 (has links)
Dans un premier temps, la méthode est présentée pour le cas bidimensionnel. La méthode est introduite de manière générale, en ce qui concerne les milieux discrets périodiques. L’application à la maçonnerie est ensuite abordée. La résistance homogénéisée de colonnes et murs de maçonnerie est calculée en termes de contraintes et couples-contraintes généralisées du milieu continu de Cosserat. La formulation d’une méthode basée sur le milieu de Cosserat permet la prise en compte de l’influence de la rotation relative des particules du milieu discret. Cette influence est mise en évidence à travers l’application à la maçonnerie, en comparaison avec les autres méthodes présentes dans la littérature. Dans un deuxième temps, la méthode est étendue au cas tridimensionnel. Des milieux discrets périodiques ayant leurs particules disposées le long de trois directions spatiales et montrant trois vecteurs de périodicité sont alors considérés. L’extension de la méthode s’inscrit dans le cadre de la théorie micropolaire tridimensionnelle. Cela permet la prise en compte des effets 3Dde la translation et la rotation relative des particules. L’application aux colonnes et aux murs de maçonnerie montre comment la résistance dans le plan et hors-plan de la maçonnerie sont, par ces effets, couplées. La rotation relative des blocs accentue cette interaction, qui comporte une diminution de la résistance dans-le-plan précédemment calculée. Les murs de maçonnerie sont ici décrits par des modèles de plaque micropolaire. Une formulation aux éléments finis pour des modèles de plaque micropolaire est ensuite développée. Dans un premier temps, la formulation est présentée pour l’élasticité et la dynamique. La validation d’un élément fini spécifique pour le calcul des structures est faite à l’aide d’exemples numériques. L’utilisation de cet élément sur des structures de maçonnerie est ensuite abordée, par l’implémentation d’un modèle d’homogénéisation déjà existant. Les fréquences fondamentales d’un mur maçonné sont ainsi calculées et comparées avec celle obtenues par un modèles aux éléments discrets. L’importance des rotations des blocs dans le plan du mur ainsi que leur participation dans la réponse inertielle du mur vis-à-vis des actions sismiques sont enfin investiguées. Dans un deuxième temps, la formulation aux élements finis est étendue à la plasticité, à travers l’implémentation de la théorie multi-critère pour les milieux de Cosserat. L’implémentation de cette théorie est basée sur un algorithme de projection, dont le schéma itératif de résolution est reporté. Les aspects numériques reliés à l’implémentation de l’algorithme sont examinés. Une importante limitation de l’implémentation classique de l’algoritme est montrée et une nouvelle stratégie de solution est proposée. L’élément fini de Cosserat est donc validé pour la plasticite à l’aide de nombreux exemples numériques. En conclusion, trois approches de modélisation pour les structures de maçonnerie sont proposéeset comparées. Un model continu d’homogénéisation basée sur le milieu de Cosserat est d’abord présenté. Le modèle est construit en introduisant les critères de ruptures homogénéisés calculés dans la première partie du travail dans l’élément fini développé dans la deuxième partie du travail. Un modèle continu basée sur le milieu de Cauchy est ensuite considéré. Ce denier est construit à partir de modèles déjà présents dans la littérature. L’efficacité de ces deux modèles est examinée dans la représentation du comportement élastoplastique d’un mur de maçonnerie. Leur comparaison se base sur un troisième modèle, crée à l’aide des éléments discrets. La capacité des trois modèles de modéliser l’effet d’échelle dans la formation des mécanismes de ruine est enfin investiguée sur une application pratique aux structures de maçonnerie / Developed. The method is based on the two-dimensional micropolar continuum theory and makes use of the kinematic approach of limit analysis in conjunction with a rigorous homogenization technique. The method is introduced in a general way, with regard to the genericclass of discrete periodic media made of particles of the same type. The case of masonry is presented as application. The homogenised strength domains of masonry columns and walls are retrieved in terms of the generalized stresses and couple stresses of the Cosserat continuum. The formulation of the method based on the Cosserat continuum enables the investigation of the influence of the relative rotation of the particles on the strength of the discrete medium. This influence is illustrated by the application to masonry structures, in comparison with other methods presented in the literature. The development of the homogenisation method continues with its extension to discrete periodic media made of particles disposed along three directions and showing three periodicity vectors. In this case, the approach relies on the three-dimensional micropolar theory. This enables to capture the three-dimensional effect of the relative translations and rotations of the particles constituting the discrete medium. The application to masonry columns and walls shows how the in-plane and out-of-plane actions result coupled in the assessment of masonry strength. The relative rotation of the blocks accentuates this effect, which consistently diminishes the in-plane strength. Masonry walls are finally ascribed to homogenised plates with Cosserat kinematics. A finite element formulation for Cosserat plate models is next developed. The formulation is first presented for elasticity and dynamics. The validation of a specific finite element is made by means of numerical benchmarks and patch tests. The actual use of the element is presented in an application to masonry structures. The natural frequencies of a masonry panel modelled by discrete elements are computed and compared with those given by a homogenisation model implemented in the element. This allows to investigate the role of the in-plane rotations of the blocks and to show their implication towards seismic analyses of masonry structures. The finite element formulation is next extended to the elastoplastic framework. The implementation of the multisurface plasticity theory into the Cosserat finite element is presented. The implementation of this theory is based on a projection algorithm. An important limitation of the classical implementation of this algorithm prevents its use in the framework of multisurface plasticity in efficient way. This limitation is discussed and a solution strategy is proposed. The finite element for Cosserat plate models is finally validated through numerous numerical benchmarks. In conclusion, three different modelling approaches for masonry are proposed and comviipared. A continuum model based on the Cosserat continuum is first presented. The model isconstructed by implementing the homogenised yield criteria computed based on the proposed analytical method into the developed finite element. A homogenisation model based on Cauchy continuum is next introduced. This model is constructed by selecting appropriate constitutive laws and yield criteria from the literature. The performance of those homogenisation models in representing the elastoplastic response of a masonry panel is discussed, based on the comparison with a third analogue discrete elements model. The capability of the three models in predicting the scale effect in the formation of failure mechanisms is investigated in a practical application to masonry structures
|
64 |
Numerical modelling of masonry arch bridges : investigation of spandrel wall failureWang, Junzhe January 2014 (has links)
Masonry arch bridges still play an important role in the transportation infrastructure today in the United Kingdom. Previous research has mainly focused on the load carrying capacity in the span direction. The three dimensional behaviour is often investigated by simplifying into two dimensions with modified arch parameters but these simplified analyses cannot represent all aspects of behaviour. Spandrel wall failure in some railway masonry arch bridges has raised concerns recently, and this is one aspect which cannot be modelled in two dimensions. This thesis presents a research which attempts to model the interaction behaviour between arch, backfill and spandrel wall with the aim of representing the three dimensional nature of real bridges. It mainly focuses on the spandrel wall defects under increasing load, including crack development across the wall and longitudinal cracks in the arch barrel underneath spandrel wall. Experimental results from the laboratory tests on engineering blue brick and a hydraulic premixed mortar as well as brickwork masonry specimens are presented. Numerical analysis was initially performed on these brickwork masonry specimens for validation. Three dimensional FE models were proposed for both small and large scale bridges. The general behaviour of the small scale bridge under rolling load and large scale bridge under increasing load were studied. Reasonable agreement between the FE analyses and experimental results from previous literature was obtained, indicating the model validated for small masonry specimens could be scaled up to full-scale bridges. A series of computer models were constructed to investigate the relationship between a range of geometric and material parameters and the lateral behaviour of arch bridges. The backfill depth and spandrel wall thickness have greatest impact on both bridge strength and lateral behaviour. The fill properties also have an importance influence on the load carrying capacity. This provides an indication of which bridge should be more closely monitored for spandrel wall defects. Separate FE models was constructed to simulate existing longitudinal cracks found in the arch barrel for old bridges and the influence of strengthening of spandrel wall with tie bars. The general behaviour under a concentrated load is studied and discussed. It has been demonstrated that it is possible to effectively model the three dimension behaviour of masonry arch bridges and in particular, spandrel wall failures.
|
65 |
Studies On Shear Bond Strength - Masonry Compressive Strength Relationship And Finite Element Model For Prediction Of Masonry Compressive StrengthUday Vyas, V 12 1900 (has links)
Masonry is a layered composite consisting of mortar and the masonry unit. Perfect bond between the masonry unit and the mortar is essential for the masonry to perform as one single entity in order to resist the stresses due to various loading conditions. Nature of stresses developed in the masonry unit and the mortar and the failure pattern of masonry subjected to compression greatly depends upon the relative stiffness of the masonry unit and the mortar. The thesis is focused on (a) some issues pertaining to masonry unit – mortar bond strength and its influence on masonry compressive strength, and (b) developing a finite element (FE) model to predict the compressive strength of masonry.
Importance of masonry bond strength and masonry behaviour is highlighted in chapter 1. Characteristics of masonry units and mortars used in the investigations are presented in Chapter 2. Two types of soil-cement blocks with widely varying strength and elastic properties and cement-lime mortars of two different proportions were used in the investigations. Results of stress-strain relationships and other characteristics were determined for the blocks as well as for mortars. Block-mortar combinations were selected to have block modulus to mortar modulus ratio of <1.0, ~1.0 and >1.0.
Different artificial methods of enhancing the shear bond strength of masonry couplets have been discussed in chapter 3. Shear bond strength of the masonry couplets was determined through a modified direct shear box test apparatus. Without altering the block and mortar properties, bond strength values for three block-mortar combinations were generated through experiments. Effect of pre-compression on shear bond strength has also been examined for certain block-mortar combinations. Considering five different bond strength values and three block-mortar combinations, compressive strength and stress-strain characteristics of masonry was obtained through the tests on masonry prisms. A detailed discussion on influence of shear bond strength on masonry compressive strength is presented. Major conclusions of the investigation are: (a) without altering the block and mortar characteristics shear bond strength can be enhanced considerably through the manipulation of surface texture and surface coatings, (b) masonry compressive strength increases linearly as the shear bond strength increases only for the combination of masonry unit modulus less than that of mortar modulus, (c) masonry compressive strength is not sensitive to bond strength variation when the modulus of masonry unit is larger than that of the mortar.
Chapter 4 is dedicated to the development of a 3D FE model to predict the masonry compressive strength. Literature review of empirical methods/formulae and some failure theories developed to predict masonry strength are presented. Existing FE models for masonry dealing with both macro and micro modelling approaches are reviewed. The proposed FE model considers (a) 3D non-linear analysis combined with a failure theory, (b) uses multi-linear stress-strain relationships to model the non-linear stress-strain behaviour of masonry materials, (c) adopting Willam-Warnke’s five parameter failure theory developed for modelling the tri-axial behaviour of concrete, and (d) application of orthotropic constitutive equations based on smeared crack approach. The predicted values of masonry compressive strength are compared with experimental values as well as those predicted from other failure theories. The thesis ends with a summary of conclusions in chapter 5.
|
66 |
Behavior and vulnerability of reinforced masonry shear walls /Minaie, Ehsan. Moon, Franklin. January 2009 (has links)
Thesis (Ph.D.)--Drexel University, 2009. / Includes abstract and vita. Includes bibliographical references (leaves 363-370).
|
67 |
Resistance of membrane retrofit concrete masonry walls to lateral pressureMoradi, Lee. January 2007 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2007. / Title from PDF title page (viewed Feb. 4, 2010). Additional advisors: James S. Davidson, Robert J. Dinan, Alan E. Eberhardt, Jason T. Kirby, Talat Salama, Houssam A. Toutanji. Includes bibliographical references (p. 139-146).
|
68 |
Quantifying productivity loss due to field disruptions in masonry constructionNuntapong Ovararin. January 2001 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2001. / Vita. Includes bibliographical references. Available also from UMI/Dissertation Abstracts International.
|
69 |
An Investigation of the Heat and Moisture Performance of a Ventilated Masonry Retrofit for Historic StructuresPearson, Nastassja 30 March 2011 (has links)
Insulating historic masonry buildings will improve thermal performance. However, heritage requirements often limit the addition of insulation to the interior surface. This can lead to colder and wetter walls. Freezing temperatures coupled with high moisture levels in the brick leave the walls susceptible to frost damage. Current retrofit designs attempt to control condensation of interior moisture. However, these designs do not consider exterior moisture sources, nor do they allow for interstitial moisture to be easily removed.
This thesis presents an innovative, ventilated masonry retrofit that utilizes drainage and drying to address moisture accumulation issues. Computer simulations are used to assess and compare the hygrothermal performance of typical and ventilated masonry retrofits. The results show masonry moisture contents are reduced when ventilation drying is provided. Further, these simulations show it may be possible to increase thermal insulation levels in historic masonry buildings without damaging the very façade to be preserved.
|
70 |
Centrifuge modelling of soil/masonry structure interactionTaunton, Paul R. January 1997 (has links)
No description available.
|
Page generated in 0.0312 seconds