• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 134
  • 32
  • 14
  • 13
  • 8
  • 6
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 240
  • 240
  • 38
  • 36
  • 35
  • 32
  • 29
  • 27
  • 26
  • 24
  • 23
  • 20
  • 20
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Nouveaux concepts d’élaboration de la pyrazolidine par la méthode Raschig et par voie indirecte, en transitant par la 1 et 2-pyrazoline, suivie d’une hydrogénation catalytique : synthèses et modélisations cinétiques, équilibres entre phases et schémas de procédés / New concepts of development of pyrazolidine by the Raschig method and by indirect way, via 1 and 2-pyrazoline followed by catalytic hydrogenation : synthesis, kinetic mode

El Hajj, Ahmad 20 December 2011 (has links)
Ce travail, effectué dans le cadre d'une convention de recherche avec la Société ISOCHEM, a pour objectif la mise au point d'un nouveau procédé de synthèse de la pyrazolidine par la voie Raschig directe et par voie indirecte, en transitant par la 1 et 2-pyrazoline, suivie d'une hydrogénation catalytique. Cette hydrazine suscite un grand intérêt en raison de ses nombreuses applications dans l'industrie pharmaceutique et des cosmétiques. Cette thèse a été financée par le Centre National de Recherche Scientifique dans le cadre d'une bourse doctorale ingénieure/PED. La première partie est consacrée à l'étude du procédé Raschig direct qui résulte de l'action de l'hypochlorite de sodium sur un excès d'amine. La définition du process a nécessité la détermination des cinétiques et des mécanismes réactionnels afin de déterminer les rendements, les temps de séjour et de simuler numériquement l'ensemble des opérations de synthèse. Les conditions d'extraction ont été établies en exploitant les particularismes des équilibres entre phases impliqués afin d'élaborer le flow-sheet correspondant. La seconde partie est relative à la voie indirecte. Elle est basée sur l'élaboration de la 1- pyrazoline par une double déshydrohalogénation du N,N-dichloro-1,3 diaminopropane. La pyrazolidine est ensuite obtenue par hydrogénation catalytique du groupe azo. Un modèle global d'élaboration de la pyrazolidine a été établi qui nous a permis de déterminer les conditions optimales et de définir les segments synthèses et extractions ainsi que les différentes opérations unitaires du procédé ainsi que les bilans matière et énergie / This work, conducted as part of a research agreement with the Company ISOCHEM, aims to develop a new synthesis of pyrazolidine by the raschig method and by indirect way via 1 and 2-pyrazoline followed by catalytic hydrogenation. This hydrazine is very important, because of its many applications in the pharmaceutical and cosmetic industries. This thesis was funded by the National Center for Scientific Research as part of a doctoral fellowship engineer / PED. The first part is devoted to the study of the direct Raschig process resulting from the action of sodium hypochlorite in an excess of amine. The definition of the process involved the determination of the kinetic and reaction mechanisms to determine yields, residence time and to simulate numerically the overall operations of synthesis. The extraction conditions were established by exploiting the peculiarities of the phase equilibria in order to developed the flow-sheet. The second part relates to the indirect way. It is based on the synthesis of the 1 pyrazoline by double dehydrohalogenation of N,N-dichloro-1,3-diaminopropane. The pyrazolidine is then obtained by catalytic hydrogenation of the azo group. A global model for developing the pyrazolidine was established which allowed us to determine the optimum conditions and to identify segments syntheses and extractions as well as various unit operations of the process and the mass and energy balances
182

Detektion langzeitiger Eismassenvariationen in der Küstenregion der Ostantarktis

Knöfel, Christoph 13 July 2017 (has links) (PDF)
Soll die Massenbilanz des antarktischen Eises bestimmt werden, so ist das grundlegend mit der Beobachtung dessen Geometrie, Kinematik und Dynamik verbunden. Basis dieser Arbeit sind Beobachtungen von Eisoberflächenhöhen und Fließgeschwindigkeiten im Einzugsbereich des Helen-Gletschers südlich der russischen Antarktisstation Mirnyj und im Einzugsbereich des Hays-Gletschers südöstlich der Station Molodëžnaja. 1962 wurde von Mirnyj ausgehend das sich über 100km in südliche Richtung erstreckende geodätisch-glaziologische Triangulationsnetz Mirnyj angelegt. 1972 erfolgte die Realisierung einer Traverse über das Einzugsgebiet des Hays-Gletschers. Beide Regionen wurden in den folgenden Jahren mehrfach wiederholt beobachtet. Eine erneute Wiederholungsmessung von Eisoberflächenhöhen und Fließgeschwindigkeiten konnte zwischen 2005 und 2009 realisiert werden. Diese Arbeit beleuchtet diese Aktivitäten und beschreibt die Ableitung langzeitiger Eismassenveränderungen über Zeiträume mehrerer Dekaden. Die historische Datengrundlage, die Realisierung eines einheitlichen Bezugssystems sowie die verwendeten Beobachtungsverfahren werden ausführlich erläutert. Der Vergleich von Eisoberflächenhöhen der 2000er Jahre und Höhen der 1960er bzw. 1970er Jahre führt zur Abschätzung langzeitiger Veränderungen der Eisoberflächenhöhe für beide Regionen.
183

Hydrothermal Fe-Carbonate Alteration Associated with Volcanogenic Massive Sulfide (VMS) Deposits in Cycle IV of the Noranda Mining Camp, Rouyn-Noranda, Quebec

Wilson, Ryan January 2012 (has links)
Massive sulfide deposits in the Noranda mining camp, northwestern Québec, are mainly associated with extensive footwall alteration defined by intense chloritization and sericitization. However, Fe-carbonate alteration also occurs in proximity to some deposits. To test the exploration significance of carbonate alteration in the camp, two areas of intense carbonate alteration were examined, around the small Delbridge deposit and near the new Pinkos occurrence in the Cyprus Rhyolite. Between 1969 and 1971, the Delbridge deposit produced 370,000 t of ore grading 9.6% Zn, 0.61% Cu, 110 g/t Ag, and 2.1 g/t Au. Recent drilling at the new Pinkos occurrence intersected 2.64 m of massive to semi-massive sulfides grading 8.1% Zn and 18.2 g/t Ag. Alteration mapping has shown that the distribution of Fe-carbonates can be used to identify vertically extensive zones of hydrothermal upflow at both properties. At Delbridge, intense Fe-carbonate alteration in brecciated rhyolite defines a pipe-like upflow zone that extends vertically for up to 300 m within the stratigraphic footwall of the massive sulfides and 100 m into the hanging wall. The location of known massive sulfide mineralization coincides with the intersection of the alteration pipe and a favorable horizon marked by the occurrence of fine-grained volcaniclastic rocks. At Pinkos, a similar zone of Fe-carbonate alteration occurs in outcrops of coherent rhyolite. Fe-carbonate alteration is most intensely developed along polygonal cooling fractures in massive rhyolite and decreases in intensity towards the centers of the columns. Fe-carbonate stringers and locally abundant matrix carbonate occur in fragmental rocks at the stratigraphic top of the coherent rhyolite flows and are most intense at the location of sulfide-bearing outcrops that mark the known mineralized horizon. Whereas Fe-carbonate alteration defines the central part of the hydrothermal upflow zones at both properties, disseminated pyrite occurs at the margins and is widespread outside the main upflow zones. This may indicate that Fe-carbonate in the main upflow zones formed at the expense of earlier disseminated sulfides. Replacement of pyrite by synvolcanic Fe-carbonate alteration at Delbridge and Pinkos can probably be attributed to a relatively high concentration of dissolved CO2, possibly of magmatic origin, in the main-stage ore-forming fluids.
184

Quantification du bilan de masse des glaciers de montagne à l'échelle régionale par télédétection spatiale optique / Quantification of mountain glaciers surface mass balance at regional scale from optical satellite images

Davaze, Lucas 07 November 2019 (has links)
Au-delà de leur rôle d’icône du changement climatique, les glaciers de montagne sont une composante essentielle de notre planète. Ils sont, de plus, de véritables « climat-mètres » naturels. Malgré leur faible superficie (0.5% des terres émergées), les glaciers de montagne contribuent à hauteur de 30% à la hausse du niveau des mers. Dans certaines régions, ils constituent de véritables enjeux quant à l’eau potable, l’agriculture, la production hydroélectrique ou les aléas glaciaires. Peu sont en revanche instrumentés (<0.0025%) et leurs fluctuations à l’échelle de régions entières sont mal connues.Grâce au développement de capteurs satellitaires à haute résolution spatiale (métrique à décamétrique), le développement de méthodes automatisées permet aujourd’hui d’augmenter considérablement le nombre de glaciers observés. Après avoir dressé un état de l’art des méthodes existantes et identifié les verrous méthodologiques, nous avons développé deux méthodes en particulier.La première se base sur la détection automatique de l’altitude de la limite glace/neige (i.e. ligne de neige) à la surface du glacier, à partir d’images satellites optiques. Cette altitude, lorsque mesurée à la fin de l’été, est un marqueur du changement de masse à la surface du glacier ayant eu lieu au cours de l’année (appelé bilan de masse de surface). Cette approche nous a permis d’estimer le bilan de masse de surface annuel de 239 glaciers dans les Alpes européennes et de 82 glaciers dans les Andes tropicales pour la période 2000-2016 et 2000-2018, respectivement. La perte moyenne annuelle observée est de -0.74 et de -1.29 m équivalent eau par an pour les deux régions respectivement. A notre connaissance, cette approche a permis d’établir le premier jeu de données de bilans de masse de surface annuels pour des glaciers individuels à échelle régionale à partir d’images satellites optiques. Une dépendance du bilan de masse de surface moyen par glacier à des caractères morpho-topographiques (e.g. pente, altitude médiane …) a été observée, où plus les glaciers sont pentus et hauts en altitude, moins leur perte de masse est importante. Une comparaison avec des mesures in situ dans les Alpes Européennes révèle une surestimation de la perte de masse par ces dernières si on les extrapole spatialement, notamment à cause de la faible représentation de glaciers à forte pente (>20°) dans les mesures in situ. Notre étude sur les Alpes Européennes a de plus permis d’identifier une variabilité interannuelle hétérogène sur cette région, en partie expliquée par des contextes climatiques différents grâce à l’utilisation de données issues de ré-analyses.Le développement d’une autre méthode a permis, à partir de l’analyse de carte d’albédo issues du capteur MODIS, de caractériser le bilan de masse de surface annuel et estival de 30 glaciers dans les Alpes françaises. Cette étude ouvre la porte à l’utilisation de cette méthode pour l’analyse du bilan annuel et saisonnier à l’échelle régionale.Ce travail a permis, à travers des applications dans différentes régions englacées, de développer et valider des méthodes capables, à partir d’images satellites optiques, d’estimer le bilan de masse de surface annuel et saisonnier de glaciers de montagne à l’échelle de régions entières. Ces estimations peuvent ensuite être utilisées pour : (1) étudier l’impact du climat local sur les glaciers de montagne ; (2) d’investiguer de possibles conditions météorologiques favorisant les fluctuations observées ; (3) calibrer et valider les modèles glacio-hydrologiques utilisés pour estimer les contributions actuelles et futures des glaciers de montagne au fonctionnement hydrologique des bassins versants et à l'élévation du niveau des mers. / Beyond their iconic role of climate change, mountain glaciers can be considered as Earth’ essential component and natural “climate-meter”. Despite their small spatial coverage (0.5% of emerged land), mountain glaciers contribute as high as 30% of the observed sea-level rise. In some regions, they are considered as essential issues because of their importance in terms of potable water, agriculture, hydroelectricity or natural hazards. A small share is however monitored in situ (<0.0025%) and their fluctuations at regional scale are poorly known.Thanks to the development of high spatial resolution satellite sensors (metric to decametric), new methods are today available to significantly increase the number of monitored glaciers. After a state of the art of the existing methods and an identification of the limitations, we focused our attention on the development of two methods.The first one is based on the automatic detection of the snow/ice interface altitude (i.e. snowline) at the glacier surface from optical satellite images. This altitude, when estimated at the end of summer, is a proxy of the annual glacier-wide mass change at the glacier surface (called surface mass balance, SMB). Using this approach, we estimated the annual SMBs of 239 glaciers in the European Alps and 82 glaciers in the tropical Andes for the period 2000-2016 and 2000-2018, respectively. The mean mass loss are -0.74 and -1.29 m water equivalent per year for the two regions, respectively. This approach allowed to derive the first dataset of annual SMBs for individual glaciers at regional scale from optical remote sensing. We found significant relationships between the computed SMBs and the glacier morpho-topographic features (e.g. slope, median altitude, …), with steeper and higher glaciers, experiencing less mass losses. Comparison with in situ monitored SMBs revealed an overestimation of mass losses from in situ estimates, due to a low representativeness of steep glaciers (>20°) in the in situ datasets. Our study also revealed heterogeneous inter-annual variability across the European Alps, partially explained by the climatic context of the studied sub-regions, thanks to the analysis of climate reanalysis data.We developed a second method to derive the annual and summer SMBs from albedo maps, computed from MODIS images. With an application on 30 glaciers in the French Alps, this work opened the way toward a regional application of this method, in order to estimate both annual and summer SMBs.By performing regional applications on different glacierized regions, we developed and validated methods capable of deriving the annual and summer SMBs of individual mountain glaciers at regional scale, from optical remote sensing data. These data could then be used to (1) assess the impact of peculiar climatic conditions onto mountain glaciers; (2) investigate possible meteorological conditions driving the documented glacier fluctuations; (3) calibrate and validate glacio-hydrological models used to estimate the current and future contributions of mountain glaciers to the hydrological functioning of mountain catchments and to sea level rise.
185

Detektion langzeitiger Eismassenvariationen in der Küstenregion der Ostantarktis

Knöfel, Christoph 27 March 2017 (has links)
Soll die Massenbilanz des antarktischen Eises bestimmt werden, so ist das grundlegend mit der Beobachtung dessen Geometrie, Kinematik und Dynamik verbunden. Basis dieser Arbeit sind Beobachtungen von Eisoberflächenhöhen und Fließgeschwindigkeiten im Einzugsbereich des Helen-Gletschers südlich der russischen Antarktisstation Mirnyj und im Einzugsbereich des Hays-Gletschers südöstlich der Station Molodëžnaja. 1962 wurde von Mirnyj ausgehend das sich über 100km in südliche Richtung erstreckende geodätisch-glaziologische Triangulationsnetz Mirnyj angelegt. 1972 erfolgte die Realisierung einer Traverse über das Einzugsgebiet des Hays-Gletschers. Beide Regionen wurden in den folgenden Jahren mehrfach wiederholt beobachtet. Eine erneute Wiederholungsmessung von Eisoberflächenhöhen und Fließgeschwindigkeiten konnte zwischen 2005 und 2009 realisiert werden. Diese Arbeit beleuchtet diese Aktivitäten und beschreibt die Ableitung langzeitiger Eismassenveränderungen über Zeiträume mehrerer Dekaden. Die historische Datengrundlage, die Realisierung eines einheitlichen Bezugssystems sowie die verwendeten Beobachtungsverfahren werden ausführlich erläutert. Der Vergleich von Eisoberflächenhöhen der 2000er Jahre und Höhen der 1960er bzw. 1970er Jahre führt zur Abschätzung langzeitiger Veränderungen der Eisoberflächenhöhe für beide Regionen.
186

Rohstoffliche und verfahrenstechnische Einflussfaktoren der Pyrolyse biogener Rohstoffe

Reichel, Denise 18 May 2017 (has links)
Die vorliegende Arbeit beschäftigt sich mit rohstofflichen und verfahrenstechnischen Einflussfaktoren bei der Biomassepyrolyse. Ausgehend von der Entwicklung einer kleintechnischen Festbettpyrolyseapparatur, erfolgten experimentelle Untersuchungen an 26 biogenen Einsatzstoffen unter verschiedenen Prozessbedingungen. Die Apparatur erlaubt eine vollständige Bilanzierung und Gewinnung aller Produkte, zudem können Einflüsse durch sekundäre Reaktionen in der Gasphase minimiert werden. Die Einsatzstoffe, welche u. a. auch Zellstoff, Xylan und Alkali-Lignin einschließen, wurden hinsichtlich brennstofftechnischer und physikalischer Eigenschaften sowie der Stoffgruppenzusammensetzung charakterisiert. Sie repräsentieren eine große Bandbreite möglicher Zusammensetzungen. Bei den Prozessparametern wurde die Pyrolysetemperatur im Bereich von 200 bis 750 °C, die Aufheizrate zwischen 5 und 100 K/min, die Feststoffverweilzeit von 0 bis 30 min sowie die Partikelgröße (0 bis 5 mm) variiert. Aus den Untersuchungen zum Einfluss der Prozessparameter für die verschiedenen Einsatzstoffe wurden unter Anwendung einer geeigneten Bilanzierungsmethodik geschlossene Masse- und Elementbilanzen für jeden Versuchspunkt aufgestellt. Unter den Prozessvariablen konnte die Temperatur erwartungsgemäß als wichtigste Einflussgröße identifiziert werden. Der zweistufige Zersetzungsverlauf der Biomassen ermöglicht die mathematische Beschreibung der temperaturabhängigen Ausbeuten mittels der zweistufigen Boltzmann-Funktion für den gesamten Temperaturbereich mit hohen Bestimmtheitsmaßen. Die rohstofflichen Einflussgrößen wurden unter Anwendung der Rangkorrelationsmethode nach Spearman und der Produkt-Moment-Korrelation nach Pearson mit den definierten Zielgrößen (Ausbeuten, Produktzusammensetzung, Kokseigenschaften, Heizwerte, Energieeinbindung) bei verschiedenen Pyrolysetemperaturen korreliert. Neben der Stoffgruppenzusammensetzung konnten bei den rohstofflichen Einflussfaktoren die Gehalte an Alkalien sowie der Gesamtgehalt an potentiell katalytisch aktiven Bestandteilen (Na, K, Mg, Ca, Fe) als Haupteinflussgrößen identifiziert werden. Korrelationen ergeben sich auch für brennstofftechnische Eigenschaften, wobei neben dem Flüchtigen- und dem Aschegehalt, das O/C-Verhältnis signifikant ist. Die gefundenen statistischen Zusammenhänge können weitestgehend mechanistisch begründet werden. Zur Quantifizierung der ermittelten Zusammenhänge für die Zielgrößen wurden multiple Regressionsmodelle erstellt und anhand von Bestimmtheitsmaß, Informationskriterium und mittleren Modellfehlern bewertet. Somit konnten 42 Regressionsgleichungen für die Produktausbeuten bei verschiedenen Pyrolysetemperaturen entwickelt werden, die auf den Gehalten verschiedener Stoffgruppen und dem Gesamtgehalt an katalytisch aktiven Elementen basieren. Weitere 56 Regressionsgleichungen stehen für die Berechnung von Teer/Öl-Elementarzusammensetzung, Kokszusammensetzung, Teer/Öl-Heizwert sowie Energieeinbindung im Koks bei verschiedenen Pyrolysetemperaturen zur Verfügung. Die Prognoseeignung der Gleichungen wurde anhand eines weiteren Datensatzes für Apfeltrester überprüft. Für die Koks-, die Gas- und die Kondensatausbeute sowie die genannten Produkteigenschaften ergab sich eine gute Vorhersagequalität, die jedoch stark von der verwendeten Gleichung abhängt. Die Validierung mit Literaturdaten konnte aufgrund fehlender Datensätze, die sowohl die notwendigen Rohstoffparameter als auch Produktausbeuten und -eigenschaften enthalten, nur anhand der Koksausbeute erfolgen. Für verschiedene Biomassen und biogene Reststoffe führte dies zu einer guten Anpassung. Die mathematische Beschreibung der Ausbeuten und bestimmter Produkteigenschaften über Regressionsgleichungen auf Grundlage von Rohstoffparametern stellt einen vielversprechenden Ansatz für die Vorhersage der maximalen Ausbeuten bei bestimmten Bedingungen dar. Dies ermöglicht eine Abschätzung zur Einsatzeignung von Biomassen bzw. biogenen Reststoffen für verschiedene Anwendungszwecke. Bisher existiert kein derartiges Modell zur Vorhersage der definierten Zielgrößen. Grundsätzlich wäre die Entwicklung einfacher Gleichungen mit wenigen, einfach bestimmbaren und standardisierten Parametern erstrebenswert. Die Ergebnisse haben jedoch gezeigt, dass Ein-Variablen-Modelle die Trends zwischen den Biomassen aufgrund der komplexen Zusammenhänge zwischen Pyrolyseverhalten und Rohstoffparametern häufig nicht richtig wiedergeben können. Für robuste Modelle sind somit mindestens zwei unabhängige Modellparameter mit idealerweise gegensätzlichem Einfluss notwendig.:Abkürzungs- und Symbolverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x Abbildungsverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii Tabellenverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii 1 Einleitung und Zielstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Kenntnisstand . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1 Zusammensetzung und Struktur von Lignocellulosen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Allgemeine chemische Zusammensetzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.2 Struktureller Aufbau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.3 Vorkommen und Einbindungsformen von anorganischen Bestandteilen . . . . . . . . . . . . . . . . . . . 14 2.2 Möglichkeiten zur Untersuchung der Pyrolyse von Biomassen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1 Untersuchungsmethoden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2 Verwendete Reaktoren zur Untersuchung der Biomassepyrolyse . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 Reaktionsabläufe bei der Biomassepyrolyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4 Einflussfaktoren auf Pyrolyseproduktverteilung und -eigenschaften . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.1 Einfluss rohstofflicher Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4.2 Einfluss verfahrenstechnischer Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.5 Beschreibung und Vorhersage des Pyrolyseverhaltens von Biomasse . . . . . . . . . . . . . . . . . . . . . 39 2.5.1 Empirische Modelle basierend auf statistischen Methoden . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.5.2 Kinetische Modelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.5.3 Modelle auf Basis der Stoffgruppenzusammensetzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.5.4 Netzwerkpyrolysemodelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.6 Schlussfolgerungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3 Untersuchungsmethodik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1 Einsatzmaterialien und deren Charakterisierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.1 Biomassen und Vorbehandlung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.2 Charakterisierungsmethoden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2 Entwicklung einer apparativen Einrichtung zur Bilanzierung des Biomassepyrolyseprozesses . . . 55 3.2.1 Anforderungen und Zielstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2.2 Konzeption, Dimensionierung und Optimierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.2.3 Endgültige Konfiguration der Laborpyrolyseanlage (LPA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.3 Durchführung der Bilanzversuche an der LPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 3.3.1 Parametervariationen bei der Festbettpyrolyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.2 Versuchsvorbereitung und -durchführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.3 Produktrückgewinnung und -aufarbeitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.4 Methodik bei der Bilanzierung des Pyrolyseprozesses im Festbettreaktor . . . . . . . . . . . . . . . . . . 69 3.4.1 Bilanzgleichungen und -annahmen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4.2 Fehlerabschätzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4 Ergebnisse zur Charakterisierung der Einsatzmaterialien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.1 Brennstofftechnische Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2 Chemisch-strukturelle Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.3 Physikalische Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 5 Einfluss verfahrenstechnischer und rohstofflicher Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.1 Bilanzfehler und Wiederholbarkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.1.1 Vergleich der Bilanzierungsvarianten und Bilanzfehler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.1.2 Wiederholbarkeit der Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.2 Einfluss verfahrenstechnischer Parameter auf Produktverteilung und -zusammensetzung . . . . 94 5.2.1 Einfluss radialer Temperaturgradienten in der Biomasseschüttung . . . . . . . . . . . . . . . . . . . . . 94 5.2.2 Pyrolysetemperatur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.2.3 Empirische Gleichungen für die Temperaturabhängigkeit der Produktausbeuten . . . . . . . . . 103 5.2.4 Aufheizgeschwindigkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.2.5 Feststoffverweilzeit bei Pyrolyseendtemperatur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.3 Einfluss rohstofflicher Parameter auf Produktverteilung und -zusammensetzung . . . . . . . . . . . 111 5.3.1 Partikelgröße . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.3.2 Pyrolyse von Zellstoff, Xylan und Alkali-Lignin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.4 Kombinierte Betrachtungen zum Temperatur- und Rohstoffeinfluss . . . . . . . . . . . . . . . . . . . . . 120 6 Mathematische Zusammenhänge zwischen Rohstoffeigenschaften und Pyrolyseverhalten . . . . 133 6.1 Korrelation mit Rohstoffeigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.1.1 Produktausbeuten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.1.2 Produkteigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.1.3 Schlussfolgerungen zur Korrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 6.2 Regressionsanalyse und Multiple Regression zur Beschreibung des Pyrolyseverhaltens . . . . . 155 6.2.1 Modellvergleich am Beispiel der Koksausbeute bei 500 °C . . . . . . . . . . . . . . . . . . . . . . . . . . 155 6.2.2 Gleichungen zur Berechnung der Produktausbeuten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 6.2.3 Gleichungen zur Berechnung der Produkteigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 6.2.4 Schlussfolgerungen zur Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 7 Vorhersagemöglichkeiten für das Pyrolyseverhalten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7.1 Validierung der Modellgleichungen mit internem Datensatz . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7.2 Validierung mit Literaturdaten zur Festbettpyrolyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 8 Zusammenfassung und Ausblick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181 Literatur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187 Anhang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 A Weiterführende Informationen zu Kapitel 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 B Weiterführende Informationen zur Untersuchungsmethodik . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211 C Ergebnisse zur Einsatzstoffcharakterisierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 D Ergebnisse zum Einfluss verfahrenstechnischer und rohstofflicher Parameter . . . . . . . . . . . . . . . 272 E Ergebnisse zur Korrelation des Pyrolyseverhaltens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314 F Ergebnisse zur Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .348 G Ergebnisse zur Vorhersage des Pyrolyseverhaltens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361 / The intention of this work was an intensive study of the influence of feedstock properties and process variables on biomass pyrolysis. Due to a lack in consistent data sets, including various feedstock parameters as well as product yields, compositions, and further properties, a laboratory fixed bed reactor was developed to overcome this problem. The pyrolysis reactor was used for experiments with 26 biogenous feedstock under variable process conditions. The reactor is suitable to assure nearly closed mass balances and a complete product recovery. Furthermore, it allows the minimization of secondary reactions. The used feedstock, which include cellulose, xylan, and lignin amongst others, represent a broad range of possible compositions and were intensively characterized by determination of fuel and physical properties as well as biopolymer composition. The varied process parameters are: temperature between 200 and 700 °C, heating rate in the range of 5 to 100 K/min, solid residence time from 0 to 30 min, and particle size up to 5 mm. Closed mass and element balances were done for every set of parameters. As expected, amongst process variables the temperature was identified as the main factor influencing biomass pyrolysis. The temperature depending products yields could be fitted well by the double boltzmann approach due to the two-stage pyrolytic decomposition of biomass. Correlation of feedstock properties with different target parameters, including yields, product composition, heating values, remaining energy content in char, and char properties, was done by Spearman´s rank correlation and Pearson´s correlation for different temperatures. Biopolymer composition as well as alkaline content and total content of potential catalytic elements (Na, K, Ca, Mg, Fe) were identified as main factors influencing biomass pyrolysis product yields and compositions. Further correlations arise with fuel properties like volatile matter and ash content besides O/C atomic ratio. The obtained correlations can be mainly related to pyrolysis mechanisms. The received relationships were quantified by means of multiple regression models. Model evaluation was done by coefficient of determination, information criteria and mean squared errors. 42 regression models, based on different biopolymer contents and the total content of catalytic elements, were provided for the mathematical description of product yields for different process temperatures. Another 56 equations are suitable for the calculation of product properties like tar/oil and char composition, tar/oil heating value, and remaining energy content in the char at different temperatures. The predictability of the regression models was proved using another data set for apple pomace. The yields of char, gas, and condensate as well as the aforementioned product properties can be predicted very well, although, the predictability varies with the applied equation. Validation of the models by literature data was only possible for the char yield, because of the mentioned lack in suitable and complete data sets. Application of regression model to fixed bed char yields for different biomass and biogenous residues from literature resulted in a good predictability. Mathematical description of pyrolysis product yields and properties by means of regression models based on feedstock parameters is a promising approach to predict maximum yields at defined conditions and, therefore, to make an estimation of suitability of the biomass to different applications. Up to now such models do not exist. In general, the development of simple equations based on a few standardized parameters which are easy to determine is worthwhile. Hence, the results showed that the overall trend between different biomass feeds was often not predicted correctly using one-parameter models. This is due to the complex relationships between pyrolysis behavior and feedstock properties. Consequently, at least two parameter models, where the variables show the opposite trends, were most appropriate.:Abkürzungs- und Symbolverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x Abbildungsverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii Tabellenverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii 1 Einleitung und Zielstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Kenntnisstand . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1 Zusammensetzung und Struktur von Lignocellulosen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Allgemeine chemische Zusammensetzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.2 Struktureller Aufbau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.3 Vorkommen und Einbindungsformen von anorganischen Bestandteilen . . . . . . . . . . . . . . . . . . . 14 2.2 Möglichkeiten zur Untersuchung der Pyrolyse von Biomassen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1 Untersuchungsmethoden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2 Verwendete Reaktoren zur Untersuchung der Biomassepyrolyse . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 Reaktionsabläufe bei der Biomassepyrolyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4 Einflussfaktoren auf Pyrolyseproduktverteilung und -eigenschaften . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.1 Einfluss rohstofflicher Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4.2 Einfluss verfahrenstechnischer Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.5 Beschreibung und Vorhersage des Pyrolyseverhaltens von Biomasse . . . . . . . . . . . . . . . . . . . . . 39 2.5.1 Empirische Modelle basierend auf statistischen Methoden . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.5.2 Kinetische Modelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.5.3 Modelle auf Basis der Stoffgruppenzusammensetzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.5.4 Netzwerkpyrolysemodelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.6 Schlussfolgerungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3 Untersuchungsmethodik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1 Einsatzmaterialien und deren Charakterisierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.1 Biomassen und Vorbehandlung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.2 Charakterisierungsmethoden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2 Entwicklung einer apparativen Einrichtung zur Bilanzierung des Biomassepyrolyseprozesses . . . 55 3.2.1 Anforderungen und Zielstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2.2 Konzeption, Dimensionierung und Optimierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.2.3 Endgültige Konfiguration der Laborpyrolyseanlage (LPA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.3 Durchführung der Bilanzversuche an der LPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 3.3.1 Parametervariationen bei der Festbettpyrolyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.2 Versuchsvorbereitung und -durchführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.3 Produktrückgewinnung und -aufarbeitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.4 Methodik bei der Bilanzierung des Pyrolyseprozesses im Festbettreaktor . . . . . . . . . . . . . . . . . . 69 3.4.1 Bilanzgleichungen und -annahmen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4.2 Fehlerabschätzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4 Ergebnisse zur Charakterisierung der Einsatzmaterialien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.1 Brennstofftechnische Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2 Chemisch-strukturelle Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.3 Physikalische Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 5 Einfluss verfahrenstechnischer und rohstofflicher Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.1 Bilanzfehler und Wiederholbarkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.1.1 Vergleich der Bilanzierungsvarianten und Bilanzfehler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.1.2 Wiederholbarkeit der Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.2 Einfluss verfahrenstechnischer Parameter auf Produktverteilung und -zusammensetzung . . . . 94 5.2.1 Einfluss radialer Temperaturgradienten in der Biomasseschüttung . . . . . . . . . . . . . . . . . . . . . 94 5.2.2 Pyrolysetemperatur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.2.3 Empirische Gleichungen für die Temperaturabhängigkeit der Produktausbeuten . . . . . . . . . 103 5.2.4 Aufheizgeschwindigkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.2.5 Feststoffverweilzeit bei Pyrolyseendtemperatur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.3 Einfluss rohstofflicher Parameter auf Produktverteilung und -zusammensetzung . . . . . . . . . . . 111 5.3.1 Partikelgröße . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.3.2 Pyrolyse von Zellstoff, Xylan und Alkali-Lignin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.4 Kombinierte Betrachtungen zum Temperatur- und Rohstoffeinfluss . . . . . . . . . . . . . . . . . . . . . 120 6 Mathematische Zusammenhänge zwischen Rohstoffeigenschaften und Pyrolyseverhalten . . . . 133 6.1 Korrelation mit Rohstoffeigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.1.1 Produktausbeuten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.1.2 Produkteigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.1.3 Schlussfolgerungen zur Korrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 6.2 Regressionsanalyse und Multiple Regression zur Beschreibung des Pyrolyseverhaltens . . . . . 155 6.2.1 Modellvergleich am Beispiel der Koksausbeute bei 500 °C . . . . . . . . . . . . . . . . . . . . . . . . . . 155 6.2.2 Gleichungen zur Berechnung der Produktausbeuten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 6.2.3 Gleichungen zur Berechnung der Produkteigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 6.2.4 Schlussfolgerungen zur Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 7 Vorhersagemöglichkeiten für das Pyrolyseverhalten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7.1 Validierung der Modellgleichungen mit internem Datensatz . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7.2 Validierung mit Literaturdaten zur Festbettpyrolyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 8 Zusammenfassung und Ausblick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181 Literatur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187 Anhang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 A Weiterführende Informationen zu Kapitel 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 B Weiterführende Informationen zur Untersuchungsmethodik . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211 C Ergebnisse zur Einsatzstoffcharakterisierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 D Ergebnisse zum Einfluss verfahrenstechnischer und rohstofflicher Parameter . . . . . . . . . . . . . . . 272 E Ergebnisse zur Korrelation des Pyrolyseverhaltens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314 F Ergebnisse zur Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .348 G Ergebnisse zur Vorhersage des Pyrolyseverhaltens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361
187

Bestimmung hydrologischer Massenvariationen aus GRACE-Daten am Beispiel sibirischer Flusssysteme

Scheller, Marita 15 October 2012 (has links)
Aus Beobachtungsdaten der Satellitenmission GRACE (Gravity Recovery and Climate Experiment) können Variationen des Erdschwerefeldes auf großen räumlichen Skalen mit hoher Genauigkeit abgeleitet werden. Die Variationen auf zeitlichen Skalen von mehreren Tagen bis Wochen und räumlichen Skalen von wenigen hundert Kilometern sind insbesondere auf Änderungen der kontinentalen Wassermassen zurückzuführen. Die vorliegende Promotionsarbeit beschäftigt sich mit der Bestimmung hydrologischer Massenvariationen aus GRACE-Daten am Beispiel der vier größten sibirischen Flusseinzugsgebiete Ob, Jenissei, Lena und Kolyma. Darauf aufbauend sollen in Kombination mit atmosphärischen Daten der NCEP-Reanalyse Süßwassereinträge in den Arktischen Ozean abgeleitet werden. Die Süßwassereinträge beeinflussen nachhaltig den Salzgehalt und damit das ozeanographische Regime des Arktischen Ozeans, welcher wiederum einen Einfluss auf die globale thermohaline Zirkulation hat. Da die großen Strömungen des Weltozeans einen grundlegenden Faktor des globalen Klimageschehens darstellen, sind die Änderungen des Süßwassereintrages ein wichtiger Aspekt hinsichtlich prognostizierter Klimatrends. Der Abfluss kann an ausgewählten Messpunkten mit einer hohen zeitlichen Auflösung beobachtet werden. Die Datenreihen weisen jedoch immer wieder Lücken auf und die bodengebundenen Messungen sind oft schwierig und kostenintensiv. Messmethoden, die unabhängig vom Zugang ins Messgebiet sind, können einen großen Fortschritt bei der Beobachtung sich ändernder Massen und Süßwasserflüsse leisten und damit einen Beitrag für ein besseres Verständnis gekoppelter komplexer Prozesse der Arktis liefern. Da die Fehlerstruktur der GRACE-Daten komplex und bis heute nicht vollständig verstanden ist, erfolgt zunächst eine Untersuchung des GRACE-Fehlerhaushaltes. Zudem werden die Fehlereffekte aufgrund des begrenzten räumlichen Spektrums und damit einhergehender Leck-Effekte auf Ebene von Gebietsmittelwerten analysiert und Lösungsvorschläge diskutiert. Dabei sind folgende Aspekte von Bedeutung: Erweiterung der GRACE-Datenreihe um geeigente Terme ersten Grades und Abschätzung von Leck-Effekten, verursacht durch das begrenzte Spektrum der Kugelfunktionsentwicklung. Leck-Effekte aufgrund ozeanischer Signalanteile sind bzgl. der Einzugsgebiete sibirischer Flusssysteme klein (< 1%), wohingegen Leck-Effekte aufgrund kontinentaler Signalanteile je nach Gebietsgröße relative Fehler von 8-17% nach sich ziehen. Die größten Fehlereffekte resultieren jedoch aus den Koeffizienten hoher Grade. Die Filterung der GRACE-Daten ermöglicht die Glättung fehlerbehafterer Signalanteile. Neben den in der Literatur gängigen Filtern wurde im Rahmen der Arbeit ein Kombinationsfilter entwickelt, welches auf Basis von räumlichen Vorinformationen aus Hydrologiemodellen signifikante Signalstrukturen in den GRACE-Datenreihen detektiert. Somit muss lediglich ein Restsignal mittels Filterung gedämpft werden. Mit dem Kombinationsfilter können sowohl feinere Signalstrukturen als auch größere Signalamplituden auf Land erhalten werden. Im Vergleich zu reinen Filteranwendungen werden hier Gesamtsignalstärke, Amplitude und Phase des jährlichen Signals gut repräsentiert. Darauf aufbauend lassen sich, in Kombination mit atmosphärischen Daten, Abflüsse für die sibirischen Flusssysteme aus GRACE-Wasserspeichervariationen ableiten. Die Validierung der berechneten Abflüsse anhand beobachteter Abflüsse zeigt eine hohe Übereinstimmung von bis zu 83%. Eine Gegenüberstellung des berechneten Abflusses der Lena mit Wasserstandsmessungen im Mündungsbereich zeigt zudem einen Zusammenhang zwischen dem maximalen Abfluss im Frühjahr und einer Zunahme des Wasserstandes in der Laptewsee. / The satellite mission GRACE (Gravity Recovery and Climate Experiment) observes the earth's gravity field on temporal scales of a few days to several weeks and spatial scales of a few hundred kilometers with high accuracy. A large part of the variations of the gravity field originate from hydrological mass changes on the continents. The dissertation discusses the determination of hydrological mass variations from GRACE for the Siberian water systems of the rivers Ob, Yenisey, Lena and Kolyma. The mass variations from GRACE data are combined with atmospheric data of the NCEP reanalysis to calculate the freshwater fluxes in the Arctic Ocean. The freshwater fluxes strongly influences the salinity and the oceanographic regime of the Arctic Ocean. In turn, the Arctic Ocean controls the global thermohaline circulation which is very important for the global climate. Because these large currents of the ocean influence the global climate, the changes of the freshwater fluxes in the Arctic Ocean are an important factor for the global climate change. The runoff can be measured pointwise with high temporal resolution, but measurements in the high latitudes are difficulty and expensive. Independent methods to measure the mass changes in the Arctic can help to determine the freshwater fluxes on large spatial scales, and contribute to understand the coupled and complex processes of the Arctic. Until present, the complex error structure of the GRACE data are not fully understand. The dissertation examines the errors and analysizes the leakage caused by the limited spectrum of the Stokes coefficients. A proposal for a solution will be discussed. The following steps are important: Expanding the GRACE data with adequate terms of degree one; Valuation of leakage errors because of the limited spectrum. Leakage due to oceanographic signals of the Arctic Ocean are small (< 1%). Leakage errors due to signals on land produces relative errors of basin averages of 8-17%. Beyond that, the largest errors are caused by the coefficients of higher degree. Filtering is an effective method to damp the error signals. In addition to the common filters described in the literature, a filter method, called composite filter, was created. Significant structures from hydrological models can be deteceted in the GRACE data without any other filtering. Only the residual signals should be filtered by using one of the common filters. In comparison to the common filters, the composite filter represents the signal strength, the signal structures, the amplitude and the phase of the saisonal signal on the continents much better. Combining hydrological mass variations from GRACE data with atmospheric data (for example the NCEP reanalysis) the runoff of the four Siberian river systems can be calculated. The validation of the calculated runoff using observations leads to a good agreement (83% for Yenisey and Lena). Furthermore, it is possible to combine the runoff of a river system with measurements of water level and salinity in the Arctic Ocean. The high runoff of the Lena river system in spring is visible in the water level changes in the Laptev sea.
188

Impact of improved basal and surface boundary conditions on the mass balance of the Sr Rondane Mountains glacial system, Dronning Maud Land, Antarctica

Callens, Denis 06 November 2014 (has links)
Mass changes of polar ice sheets have an important societal impact, because they affect global sea level. Estimating the current mass budget of ice sheets is equivalent to determining the balance between the surface mass gain through precipitation and the outflow across the grounding line. In Antarctica, the latter is mainly governed by oceanic processes and outlet glacier dynamics.<p>In this thesis, we assess the mass balance of a part of eastern DronningMaud Land via an input/output method. Input is given by recent surface accumulation estimations of the whole drainage basin. The outflow at the grounding line is determined from the radar data of a recent airborne survey and satellite-based velocities using a flow model of combined plug flow and simple shear. We estimate the regional mass balance in this area to be between 1.88±8.50 and 3.78±3.32 Gt a−1 depending on the surface mass balance (SMB) dataset used. This study also reveals that the plug flow assumption is acceptable at the grounding line of ice streams.<p>The mass balance of drainage basins is governed by the dynamics of their outlet glaciers and more specifically the flow conditions at the grounding line. Thanks to an airborne radar survey we define the bed properties close to the grounding line of the West Ragnhild Glacier (WRG) in the Sør Rondane Mountains. Geometry and reflectivity analyses reveal that the bed of the last 65 km upstream of the grounding line is sediment covered and saturated with water. This setting promotes the dominance of basal motion leading to a change in the flow regime: in the interior flow is governed by internal deformation while its relative importance decreases to become driven by basal sliding.<p>Subsequently we present the results of the reconstruction of the SMB across an ice rise through radar data and inverse modelling. The analysis demonstrates that atmospheric circulation was stable during the last millennium. Ice rises induce an orographic uplift of the atmospheric flow and therefore influence the pattern of the SMB across them, resulting in an asymmetric SMB distribution. Since the geometry of the internal reflection horizons observed in radar data depends on the SMB pattern, the asymmetry observed in radar layers reveals the trajectories of air masses at the time of deposit. We present an original and robust method to quantify this SMB distribution. Combining shallow and deep radar layers, SMB across Derwael Ice Rise is reconstructed. Two methods are employed as a function of the depth of the layers: i.e. the shallow layer approximation for the surface radar layers and an optimization technique based on an ice flow model for the deeper ones. Both methods produce similar results. We identify a difference in SMB magnitude of 2.5 between the flanks and the ice rise divide, as well as a shift of ≈4 km between the SMB maximum and the crest. Across the ice rise, SMB exhibits a very large variability, ranging from 0.3 to 0.9 mw.e. a−1. This anomaly is robust in time.<p>Finally we draw a comprehensive description of the Sør Rondane Mountains sector. The glacial system is close to the equilibrium and seems stable but evidences suggest that it is a fragile equilibrium. The proximity of the open ocean certainly favours the interaction between warm water and the ice shelf cavity conducting to potential important melting. The thinning associated with this melting can detach the ice shelf from pinning points. This will reduce the buttressing from the ice shelf, outlet glaciers will accelerate and mass transfer toward the ocean will increase. Therefore, the future of Antarctic Ice Sheet directly depends on the changes affecting its boundaries and assessing the sensitivity of the ice sheets is essential to quantify and anticipate the future variation of mass balance. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
189

Stability of Antarctic ice shelves: A case study of the Roi Baudouin Ice Shelf, Dronning Maud Land, East Antarctica

Berger, Sophie 31 October 2017 (has links) (PDF)
The Antarctic ice sheet is increasingly contributing to sea-level rise because of accelerated mass losses at its floating extensions -- its ice shelves. By floating while remaining attached to the grounded ice sheet, ice shelves buttress (i.e. restrain) the inland ice in such a way that ice-shelf losses lead to accelerated ice discharge in the ocean. This thesis investigates the stability of Antarctic ice shelves -- so crucial for the stability of the entire ice sheet -- using the Roi Baudouin Ice Shelf (RBIS), Dronning Maud Land, East Antarctica, as a case study. The RBIS has remained relatively stable over the last millennia and presents various kilometre-scale features (pinning point, ice-shelf channels and englacial lakes) with potential impact on its present and future stability.We first derive a horizontal velocity field, combining interferometry and speckle tracking with Synthetic Aperture Radar images from ERS 1/2 and ALOS-PALSAR, respectively. The resulting velocities and associated shear-strain rates represent the most detailed fields, currently available for the RBIS and clearly resolve small-scale features of the RBIS: significant slow-down and shearing are observed upstream of a small pinning point and ice converges at ice-shelf channels. We then combine our flow field with high-resolution elevations from TanDEM-X to infer the Basal Mass Balance (BMB) of the RBIS. This method relies on mass conservation in a Lagrangian frame and enables us to finely detect spatial variability in the BMB. We show that the BMB of the RBIS varies substantially on sub-kilometre scales. Our technique is promising and could easily be applied more widely.Additionally, the flow field is used to investigate how considering/ignoring small pinning points in observations (geometry and velocities) impacts data initialisation of poorly known parameters (e.g. basal friction, ice viscosity) and subsequent ice-sheet modelling with BISICLES. We find that overlooking the pinning point in the bathymetry leads to erroneous ice-shelf properties whereas accurately capturing the pinning point in velocities is of secondary importance. Finally, before concluding the thesis, we discuss the stability of the RBIS and its neighbouring ice shelves. Most studies agree that the ice shelf has remained stable over the last decades to millennia and would likely remain so in the absence of external forcing. We however point out to three potential triggers of instabilities: (i) large quantities of surface meltwater are formed in the grounding zone and subsequently stored on the ice shelf, thereby providing fuel for hydrofracturing; (ii) ice-shelf channels are found to significantly incise the ice inland and (iii) a bathymetric trough beneath the RBIS forms a potential gateway for warm water intrusions the ice-shelf cavity, which could destabilise the ice shelf from below. We close with a short essay on the importance of outreach, where we argue that public engagement as a scientist should be considered as being part of science and should be valued for its worth. This chapter gives us the opportunity to present outreach activities undertaken in the frame of this thesis. We conclude that, just like ice shelves control Antarctic ice losses, science communication determines transfers of scientific expertise to public knowledge. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
190

Temporal Gravity Recovery from Satellite-to-Satellite Tracking Using the Acceleration Approach

Zhang, Chaoyang January 2020 (has links)
No description available.

Page generated in 0.712 seconds