• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 14
  • 14
  • 13
  • 13
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Thermal-Stress Characteristics of Large Area Additive Manufacturing

Friedrich, Brian K., II 09 May 2022 (has links)
No description available.
12

Silicone 3D Printing Processes for Fabricating Synthetic, Self-Oscillating Vocal Fold Models

Greenwood, Taylor Eugene 04 May 2020 (has links)
Synthetic, self-oscillating vocal fold (VF) models are physical models whose life-like vibration is induced and perpetuated by fluid flow. Self-oscillating VF models, which are often fabricated life-size from soft silicone elastomers, are used to study various aspects of voice biomechanics. Despite their many advantages, the development and use of self-oscillating VF models is limited by the casting process used to fabricate the models. Consequently, this thesis focuses on the development of 3D printing processes for fabricating silicone VF models. A literature review is first presented which describes three types of material extrusion 3D printing processes for silicone elastomers, namely direct ink writing (DIW), embedded 3D printing, and removable-embedded 3D printing. The review describes each process and provides recent examples from literature that show how each has been implemented to create silicone prints. An embedded 3D printing process is presented wherein a set of multi-layer VF models are fabricated by extruding silicone ink within a VF-shaped reservoir filled with a curable silicone support matrix. The printed models successfully vibrated during testing, but lacked several desirable characteristics which were present in equivalent cast models. The advantages and disadvantages of using this fabrication process are explored. A removable-embedded 3D printing process is presented wherein shapes were fabricated by extruding silicone ink within a locally-curable support matrix then curing the silicone ink and proximate matrix. The printing process was used to fabricate several geometries from a variety of silicone inks. Tensile test results show that printed models exhibit relatively high failure strains and a nearly isotropic elastic modulus in directions perpendicular and parallel to the printed layers. A set of single-material VF models were printed and subjected to vibration testing. The printed models exhibited favorable vibration characteristics, suggesting the continued use of this printing process for VF model fabrication. A micro-slicing process is presented which is capable of creating gcode for 3D printing multiple materials in discrete and mixed ratios by utilizing a previously-sliced single-material shape and a material definition. An important advantage of micro-slicing is its ability to create gcode with a mixed-material gradient. Initial test results and observations are included. This micro-slicing process could be used in material extrusion 3D printing
13

Rational Design of Poly(phenylene sulfide) Aerogels Through Precision Processing

Godshall, Garrett Francis 02 April 2024 (has links)
Poly(phenylene sulfide) (PPS), an engineering thermoplastic with excellent mechanical, thermal, and chemical properties, was gelled for the first time using 1,3-diphenylacetone (DPA) as the gelation solvent in a thermally induced phase separation (TIPS) process. PPS was dissolved in DPA at high temperatures to form a homogeneous solution. The solution was cooled, initiating phase separation and eventually forming a solidified PPS network around DPA-rich domains. Evacuation of DPA from the gel network creates monolithic PPS aerogels, one of few physically crosslinked polymer aerogel systems comprised of a high-performance thermoplastic. In this work, specific properties of PPS aerogels were controlled through the manipulation of various processing parameters, such as polymer concentration, post-process annealing conditions, mode of manufacturing (casting versus additive manufacturing), dissolution temperature, and drying method. The ultimate goal was to elucidate key process-morphology-property relationships in PPS aerogels, to ultimately improve aerogel performance and applicability. The phase diagram of PPS/DPA was first elucidated to determine the phase separation mechanism of the system, which guides all future processing decisions. The phase diagram indicated that the system undergoes solid-liquid phase separation, typical for solutions with relatively favorable polymer-solvent interactions. This assignment was validated by the calculation of the Flory-Huggins interaction parameter through two independent methods - Hansen solubility parameters and fitting melting point depression data. The influence of polymer composition on PPS aerogel properties was then characterized. As polymer concentration increased, aerogel density and mechanical properties increases, and porosity decreased. The particular morphology of PPS aerogels from DPA was that of a fibrillar network, where these axialitic (pre-spherulitic) fibrils are comprised of stacks of PPS crystalline lamellae, as suggested by x-ray scattering and electron microscopy. These interconnected microstructures responded more favorably to compressive load than similar globular PEEK aerogels, highlighting the importance of aerogel microstructure on its mechanical response. Upon solvent extraction, PPS aerogels were annealed in air environments to improve their mechanical behavior. Annealing did not dramatically shrink the aerogels, nor did it appear to affect the micron-scale morphology of PPS aerogels as observed by electron microscopy. The resistance to densification of PPS aerogels was mainly a product of their interconnected fibrillar morphologies, aided by subtle microstructural changes that occurred upon annealing. Exposure to a high temperature oxidative environment (160 – 240 oC) increased the degree of crystallinity of the aerogels, and also promoted chemical crosslinking within the amorphous PPS regions, both of which may have helped to prevent severe densification. With enhanced physical and chemical crosslinking, annealed PPS aerogels displayed improved compressive properties over unannealed analogues. Additionally, the thermal conductivity of both annealed and unannealed aerogel specimens was below that of air (~ 0.026 W/mK) and did not display a dependence on polymer composition nor on annealing condition. Generally, these experiments demonstrate that annealing PPS aerogels improved their mechanical performance without negatively affecting their inherent fibrillar morphology, low density, or low thermal conductivity. To fabricate aerogels with geometric flexibility and hierarchical porosity, PPS/DPA solutions were printed through material extrusion (MEX) and TIPS using a custom-built heated extruder. In this process, solid solvated gels were first re-dissolved in a heated extruder and solutions were deposited in a layer-wise fashion onto a room-temperature substrate. The large temperature gradient between nozzle and substrate rapidly initiated phase separation, solidified the deposited layers and formed a printed part. Subsequent solvent exchange and drying created printed PPS aerogels. The morphology of printed aerogels was compositionally-dependent, where the high extrusion temperature required to dissolve highly-concentrated inks (50 wt % PPS) also destroyed self-nuclei in solution, yielding printed aerogels with spherulitic microstructures. In contrast, aerogels printed from 30 wt % solutions were deposited at lower temperatures and demonstrated fibrillar microstructures, similar to those observed in 30 wt % cast aerogel analogues. Despite these microstructural differences, all printed aerogels demonstrated densities, porosities, and crystallinities similar to their cast aerogel counterparts. However, printed aerogel mechanical properties were microstructurally-dependent, and the spherulitic 50 wt % aerogels were much more brittle compared to the fibrillar cast 50 wt % analogues. This work introduces a widely-applicable framework for printing polymer aerogels using MEX and TIPS. Intrigued by the compositional morphological dependence of the printed PPS aerogels, the dissolution temperature (Tdis), and thus the self-nuclei content, of cast PPS/DPA solutions was systematically varied to understand its influence on aerogel morphology and properties. As Tdis increased, the length and diameter of axialites increased while aerogel density and porosity were relatively unaffected. Thus, the isolated influence of axialite dimensions (analogous to pore size and pore concentration) on aerogel properties could be studied independent of density. At low relative densities (below 0.3, aerogels of 10 – 30 wt %), compressive modulus and offset yield strength tended to decrease with Tdis, due to an increase in axialite length (akin to pore size) and number of axialites (akin to number of pores). At higher relative densities (above 0.3, 40 and 50 wt %), axialitic aerogels were so dense that changes in pore dimensions did not result in systematic changes in mechanical response. All spherulitic aerogels fabricated at the highest Tdis¬ demonstrated reduced mechanical properties due to poor interspherulitic connectivity. The thermal conductivity of all aerogels increased with polymer composition but demonstrated no clear trend with Tdis. A model for thermal conductivity was used to deconvolute calculated conductivity into solid, gaseous, and radiative components to help rationalize the measured conductivity data. This work demonstrates the importance of nucleation density control in TIPS aerogel fabrication, especially at low polymer concentrations. The specific method used to dry an aerogel generally has a great influence on its microstructure and density. Vacuum or ambient drying is the most industrially-attractive technique due to low cost and low energy usage; however, it is typically the most destructive process due to high capillary forces acting on the delicate aerogel microstructure. Three drying methods, vacuum drying, freeze drying, and supercritical CO2 drying, were used to evacuate PPS gels fabricated at three PPS concentrations (10, 15, and 20 wt %). Almost all aerogel specimens displayed excellent resilience against shrinkage as a function of the drying method, besides the 10 wt % vacuum dried sample which shrunk almost 40%. While the micron-scale aerogel morphology captured by electron microscopy appeared to be unaffected by the drying method, other properties such as aerogel surface area, mesoporous volume, and mechanical properties were effectively functions of the degree of aerogel shrinkage. Aerogel thermal conductivity was low for all samples, and in particular, vacuum dried aerogels demonstrated slightly lower conductivities than other ambiently-dried aerogel systems such as silica and carbon. In general, vacuum drying appears to be industrially viable for PPS aerogels at concentrations above 10 wt %. / Doctor of Philosophy / Polymer aerogels are nanoporous solid networks of low density. These materials are used in applications such as thermal insulation, absorbance/filtration, drug delivery, biomedical scaffolds, solid state batteries, and others. One method of creating polymeric aerogels is through thermally induced phase separation (TIPS), where a polymer is first dissolved in a high boiling point solvent at a high temperature. Next, the solution is cooled, inducing phase separation and gelation. Extraction of the gelation solvent transforms the solvated gel into an aerogel. To create polymeric aerogels with good properties and wide-ranging applicability, one should use a high-performance polymer. In this work, aerogels are for the first time made from poly(phenylene sulfide) (PPS), an engineering thermoplastic with good mechanical properties, thermal stability, and chemical resistance. PPS aerogels are fabricated using TIPS over a wide compositional range, and their microstructures, physical properties, thermal properties, and compressive properties are fully characterized. To further enhance aerogel performance, the fabrication process can be optimized to precisely control the aerogel morphology and thus the resulting properties. The influence of processing variables such as the polymer concentration, the post-fabrication aerogel annealing conditions, the method of manufacturing (traditional casting versus additive manufacturing), the dissolution temperature (temperature at which the polymer dissolves in solution prior to gelation), and the drying method on the aerogel behavior is investigated. Generally, results suggest that understanding critical process-morphology-property relationships allows for precise control over the nature of PPS aerogels.
14

Estudio y diseño de materiales de impresión 3d que soporten los sistemas de esterilización médicos

Fuentes Fuentes, Jorge Mauricio 11 February 2022 (has links)
[ES] Actualmente se usan varios materiales poliméricos para aplicaciones médicas. Debido a la facilidad de poder fabricar formas complejas, que con otros métodos es difícil realizarlas, se usa cada vez con más frecuencia la manufactura aditiva (MA) con materiales poliméricos. El proceso de fabricación aditiva por extrusión de material (MEX), es el proceso de MA más utilizado debido al bajo coste de los equipos, la facilidad de acceso a los materiales (filamento de impresión 3D) y la relativamente baja complejidad de la técnica con respecto a otras tecnologías de procesamiento de polímeros. Estos materiales deben ser compatibles con el cuerpo humano y se requiere que las partes impresas en 3D sean resistentes a los procesos de esterilización, para evitar cualquier tipo de infección o contaminación. Los procesos de esterilización por calor húmedo (MH) y calor seco (DH) son los más usados en el campo de la medicina y son asequibles incluso en instalaciones de baja complejidad. Sin embargo, varios de estos materiales poliméricos, disminuyen sus propiedades mecánicas, térmicas y reológicas y/o cambian dimensionalmente al ser sometidos a los procesos de esterilización. Algunos materiales poliméricos biocompatibles usados para aplicaciones médicas que se encuentran disponibles a nivel comercial en forma de filamento 3D para MA, como el poli(ácido láctico) (PLA), presentan alta resistencia mecánica y rigidez. Sin embargo, su fragilidad impide su uso extendido y esta fragilidad puede ser incluso mayor después de someter a los materiales a procesos de esterilización. Para investigar los efectos de estos dos métodos de esterilización, se imprimieron por MEX algunos especímenes de ensayo con filamentos comerciales de baja temperatura de fusión como el polietileno tereftalato glicol reforzado con fibra de carbono (PETG-CF), poli (ácido láctico) (PLA), CPE , PLA Smartfill®, y un material compuesto elaborado a partir de PLA y reforzado con hidroxiapatita (PLA-HA). Asimismo, se imprimieron por MEX materiales comerciales de alto punto de fusión como el policarbonato (PC), nylon (PA) y polipropileno (PP). Para caracterizar los materiales antes y después de los procesos de esterilización se realizaron pruebas mecánicas, térmicas, termo-mecánicas y ópticas para determinar el efecto de los procesos de impresión sobre cada tipo de material y verificar si las propiedades finales cumplen los requisitos para aplicaciones médicas. Se utilizó la espectroscopia infrarroja por transformada de Fourier (FTIR) para identificar los cambios químicos en los grupos funcionales de las muestras impresas y esterilizadas. Luego, se realizó un estudio morfológico por estereomicroscopio y microscopio electrónico de barrido (SEM) para estudiar los cambios de las muestras debido a los procesos de esterilización. Finalmente, en el caso del polipropileno se hizo la descripción del modelo reológico usando el modelo de Cross-WLF para inferir en las condiciones de procesamiento por MA. En general se encontró que los materiales como el nylon (PA), el polipropileno (PP) y el policarbonato (PC) pueden soportar los procesos de esterilización por calor, por lo que podrían emplearse para el desarrollo de materiales para prótesis y/u otras prestaciones médicas. Por su parte, el PETG reforzado con fibra de carbono, el CPE, el PLA, el PLA Smartfill® y el PLA reforzado con hidroxiapatita (PLA-HA) varían dimensionalmente después de los procesos de esterilización, afectando las propiedades mecánicas de las partes impresas. Por lo tanto, no se recomiendan para su aplicación en prótesis esterilizadas mediante los dos procesos de esterilización estudiados. Sin embargo, el PLA Smartfill® que es más fácil de procesar que los otros PLAs estudiados (PLA y PLA-HA) y que presenta menor contracción durante los procesos de esterilización, podría ser utilizado para aplicaciones que no permanecerán en el cuerpo humano y que requieren menores prestaciones mecánicas, como por ejemplo en guías de cirugía / [CA] Actualment s'usen diversos materials polimèrics per a aplicacions mèdiques,. A causa de la facilitat de poder fabricar formes complexes, que amb altres mètodes és difícil realitzar-les, s'usa cada vegada amb més freqüència la manufactura additiva (MA) amb materials polimèrics acceptats per a aplicacions mèdiques. El procés de fabricació additiva per extrusió de material (MEX), és el procés de MA més utilitzat a causa de el baix cost dels equips, la facilitat d'accés als materials (filament d'impressió 3D) i la relativament baixa complexitat de la tècnica respecte a altres tecnologies de processament de polímers com l'extrusió, emmotllament per injecció, etc. Aquests materials han de ser compatibles amb el cos humà i es requereix que les parts impreses en 3D siguin resistents als processos d'esterilització, per evitar qualsevol tipus d'infecció o contaminació, la qual cosa s'aconsegueix mitjançant el procés d'esterilització. Els processos d'esterilització per calor humida (MH) i calor seca (DH) són els més usats en el camp de la medicina i són assequibles fins i tot en instal·lacions de baixa complexitat (exemple: dispensaris, consultoris, etc.). No obstant això, diversos d'aquests materials polimèrics, disminueixen les seves propietats mecàniques, tèrmiques i reològiques i / o canvien dimensionalment a l'ésser sotmesos als processos d'esterilització. Alguns materials polimèrics biocompatibles usats per a aplicacions mèdiques que es troben disponible a nivell comercial en forma de filament 3D per MA, com el àcid polilàctic (PLA), presenten alta resistència mecànica i rigidesa. No obstant això, la seva fragilitat impedeix el seu ús estès i aquesta fragilitat pot ser fins i tot major després de sotmetre els materials a processos d'esterilització. Per a investigar els efectes d'estos dos mètodes d'esterilització, es van imprimir per MEX alguns espècimens d'assaig amb filaments comercials de baixa temperatura de fusió com el polietilé tereftalato glicol reforçat amb fibra de carboni (PETG-CF) , poli (àcid làctic) (PLA) , CPE , PLA Smartfill®, i un material compost elaborat a partir de PLA i reforçat amb hidroxiapatita (PLA-HA) . Així mateix, es van imprimir per MEX materials comercials d'alt punt de fusió com el policarbonat (PC) , niló (PA) i polipropileno (PP) . Per a caracteritzar els materials abans i després dels processos d'esterilització es van realitzar proves mecàniques, tèrmiques, termomecàniques i òptiques per a determinar l'efecte dels processos d'impressió sobre cada tipus de material i verificar si les propietats finals complixen els requisits per a aplicacions mèdiques. Es va utilitzar l'espectroscòpia infraroja per transformada de Fourier (FTIR) per a identificar els canvis químics en els grups funcionals de les mostres impreses i esterilitzades. Després, es va realitzar un estudi morfològic per estereomicroscopio i microscopi electrònic d'agranat (SEM) per a estudiar els canvis de les mostres degut als processos d'esterilització. Finalment, en el cas del polipropileno es va fer la descripció del model reológico usant el model de Cross-WLF per a inferir en les condicions de processament per MA. En general es va trobar que els materials com el niló (PA) , el polipropilens (PP) i el policarbonat (PC) poden suportar els processos d'esterilització per calor, per la qual cosa podrien emprar-se per al desenrotllament de materials per a pròtesi y/u altres prestacions mèdiques. Per la seua banda, el PETG reforçat amb fibra de carboni, el CPE, el PLA, el PLA Smartfill® i el PLA reforçat amb hidroxiapatita (PLA-HA) varien dimensionalment després dels processos d'esterilització, afectant les propietats mecàniques de les parts impreses. Per tant, no es recomanen per a la seua aplicació en pròtesi esterilitzades per mitjà dels dos processos d'esterilització estudiats. No obstant això, el PLA Smartfill® que és més fàcil de processar que els altres PLAs estudiats (PLA i PLA-HA) i que presenta menor contracció durant els process / [EN] Various polymeric materials are currently used for medical applications. Due to the ease of being able to manufacture complex shapes, which with other methods is difficult to perform, additive manufacturing (MA) with polymeric materials is increasingly used. The additive manufacturing process by material extrusion (MEX), is the most widely used MA process due to the low cost of the equipment, the ease of access to the materials (3D printing filament) and the relatively low complexity of the technique with respect to other polymer processing technologies. These materials must be compatible with the human body and require that the 3D printed parts be resistant to sterilization processes, to avoid any type of infection or contamination. Wet heat (MH) and dry heat (DH) sterilization processes are the most widely used in the medical field and are affordable even in low-complexity facilities. However, these polymeric materials decrease their mechanical, thermal and rheological properties and/or change dimensionally when subjected to sterilization processes. Some biocompatible polymeric materials used for medical applications that are commercially available in 3D filament form for MA, such as poly(lactic acid) (PLA), have high mechanical strength and rigidity. However, their fragility prevents their widespread use, and this fragility can be even greater after subjecting the materials to sterilization processes. To investigate the effects of these two sterilization methods, some test specimens with commercial low-temperature melting filaments such as carbon fiber reinforced polyethylene terephthalate glycol (PETG-CF), poly (lactic acid) (PLA), CPE, Smartfill PLA®, and a material were printed by MEX. compound made from PLA and reinforced with hydroxyapatite (PLA-HA). Commercial high melting point materials such as polycarbonate (PC), nylon (PA) and polypropylene (PP) were also printed by MEX. To characterize the materials before and after the sterilization processes, they performed mechanical, thermal, thermo-mechanical and optical tests to determine the effect of the printing processes on each type of material and verify if the final properties meet the requirements for medical applications. Fourier transform infrared spectroscopy (FTIR) was used to identify chemical changes in the functional groups of printed and sterilized samples. Then, a morphological study was performed by stereomicroscope and scanning electron microscope (SEM) to study the changes of the samples due to sterilization processes. Finally, in the case of polypropylene, the description of the rheological model was made using the Cross-WLF model to infer in the processing conditions by MA. In general, it was found that materials such as nylon (PA),polypropylene (PP) and polycarbonate (PC) can withstand heat sterilization processes, so they could be used for the development of materials for prostheses and / or other medical benefits. Carbon fiber reinforced PETG, CPE, PLA, Smartfill PLA® and hydroxyapatite-reinforced PLA (PLA-HA) varied dimensionally after sterilization processes, affecting the mechanical properties of the printed parts. Therefore, they are not recommended for application in sterilized prostheses by the two sterilization processes studied. However, Smartfill PLA® which is easier to process than the other PLAs studied (PLA and PLA-HA) and which has less contraction during sterilization processes, could be used for applications that will not remain in the human body and that require lower mechanical performance, such as in surgery guides. In this way, the MA by MEX represents a simple and economical technique that can be implemented for the development of materials for custom-designed surgery guides and sterilizable by simple processes such as wet heat and dry heat, available in low complexity medical facilities. / Fuentes Fuentes, JM. (2022). Estudio y diseño de materiales de impresión 3d que soporten los sistemas de esterilización médicos [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/180857 / TESIS

Page generated in 0.0988 seconds