Spelling suggestions: "subject:"datenmaterial removal"" "subject:"ateljématerial removal""
11 |
Tribochemical investigation of microelectronic materialsKulkarni, Milind Sudhakar 02 June 2009 (has links)
To achieve efficient planarization with reduced device dimensions in integrated circuits, a better understanding of the physics, chemistry, and the complex interplay involved in chemical mechanical planarization (CMP) is needed. The CMP process takes place at the interface of the pad and wafer in the presence of the fluid slurry medium. The hardness of Cu is significantly less than the slurry abrasive particles which are usually alumina or silica. It has been accepted that a surface layer can protect the Cu surface from scratching during CMP. Four competing mechanisms in materials removal have been reported: the chemical dissolution of Cu, the mechanical removal through slurry abrasives, the formation of thin layer of Cu oxide and the sweeping surface material by slurry flow. Despite the previous investigation of Cu removal, the electrochemical properties of Cu surface layer is yet to be understood. The motivation of this research was to understand the fundamental aspects of removal mechanisms in terms of electrochemical interactions, chemical dissolution, mechanical wear, and factors affecting planarization. Since one of the major requirements in CMP is to have a high surface finish, i.e., low surface roughness, optimization of the surface finish in reference to various parameters was emphasized. Three approaches were used in this research: in situ measurement of material removal, exploration of the electropotential activation and passivation at the copper surface and modeling of the synergistic electrochemical-mechanical interactions on the copper surface. In this research, copper polishing experiments were conducted using a table top tribometer. A potentiostat was coupled with this tribometer. This combination enabled the evaluation of important variables such as applied pressure, polishing speed, slurry chemistry, pH, materials, and applied DC potential. Experiments were designed to understand the combined and individual effect of electrochemical interactions as well as mechanical impact during polishing. Extensive surface characterization was performed with AFM, SEM, TEM and XPS. An innovative method for direct material removal measurement on the nanometer scale was developed and used. Experimental observations were compared with the theoretically calculated material removal rate values. The synergistic effect of all of the components of the process, which result in a better quality surface finish was quantitatively evaluated for the first time. Impressed potential during CMP proved to be a controlling parameter in the material removal mechanism. Using the experimental results, a model was developed, which provided a practical insight into the CMP process. The research is expected to help with electrochemical material removal in copper planarization with low-k dielectrics.
|
12 |
Electro-kinetically enhanced nano-metric material removalBlackburn, Travis Lee 25 August 2008 (has links)
This project is a fundamental proof of concept to look at the feasibility of using field activated abrasive particles to achieve material removal on a substrate. There are a few different goals for this project. The first goal is to prove through visualization that particle movement can be influenced and controlled by changes in electric field. The second goal is to fundamentally prove that particles controlled by electric field can remove material from a substrate. Third, it should be shown that changes in electric field can control the amount of material being removed in a given amount of time. A mathematical model will be presented which predicts metallic material removal rates based on changes in electric field strength.
In this project, a technique combining concepts from electrokinetics, electrochemical mechanical planarization, and contact mechanics is proposed, aiming at enhancing planarization performance. By introducing an AC electric field with a DC offset, we try to achieve not only a better control of metallic material removal but also more flexible manipulation of the dynamic behaviour of abrasive particles. The presence of electric field will lead to electrokinetic phenomena including electroosmotic flow of an electrolyte solution and electrophoretic motion of abrasive particles. As a result, we aim to improve both the mechanical performance of planarization that is largely determined by the polishing parameters (e.g. down pressure, rotation speed, pads, and types of abrasives) and the chemical performance of planarization that is governed by selective and collective reactions of different chemical ingrediants of the slurry with the sample surface. The aim is also to understand and improve the interactions of abrasive particles with the sample.
|
13 |
Production and Evaluation of Rapid Tooling for Electric Discharge Machining using Electroforming and Spray Metal Deposition TechniquesBlom, Ricky J January 2005 (has links)
To survive in today's manufacturing environments companies must push the standards of accuracy and speed to the highest levels possible. Electro Discharge Machining (EDM) has been used for over 50 years and recent developments have seen the use of EDM become much more viable. The goal of this research is to produce and evaluate electrodes produced by different manufacturing methods. The use of electroforming and spray-metal deposition has only recently become viable methods of producing usable rapid tooling components. The speed and accuracy as well as the cost of manufacture play a vital role in the tool and mould manufacturing process. Electroforming and spray-metal deposition offer an alternate option to traditional machining of electrodes. Electroforming is one method of producing electrodes for EDM. The fact that electroforming can be used to produce multiple electrodes simultaneously gives it the advantage of saving on costs when multiple electrodes are needed. Spray-metal deposition offers another alternative that is much cheaper and relatively faster to manufacture. The used of these non-traditional manufacturing methods in this research are compared to the performance of traditional solid electrodes in terms of machining time, material removal rate, tool wear rates and surface roughness at several standard machining settings. The results of this research are presented in this thesis along with conclusions and comments on the performance of the different methods of electrode manufacture. The major findings of the research include the solid electrodes performed better than the electroformed electrodes in Material Removal Rate (MRR), Tool Wear Rate (TWR), and Surface Roughness (Ra) at all machine settings. However it was found that the production cost of the solid electrodes was six times that of the electroformed electrodes. The production of spray metal electrodes was unsuccessful. The electrode shell walls were not an even thickness and the backing material broke through the shell making them unusable. It is concluded that with further refinements and research, electroforming and spray metal processes will become an extremely competitive method in electrode manufacture and other rapid tooling processes.
|
14 |
Investigation of material removal techniques for residual stress profile determination on induction hardened steel / Studie om materialavverkningsmetoder för bestämning av restspänningsprofil på induktionshärdat stålPettersson, Natalie January 2017 (has links)
The residual stress profile is a major factor on the fatigue life of components that are subjected to cyclic loading. In order to measure these stresses x-ray diffraction (XRD) is commonly used. The penetration depth of x-rays is limited for this method and thus, it must be combined with material removal to determine in-depth stress profiles.At SKF Manufacturing Development Center (SKF MDC), where the work for this thesis was carried out, the current layer removal method is restricted to a depth of 0.5 mm. Consequently, an additional method of material removal is necessary to obtain information at greater depths. The purpose of this thesis was to investigate possible material removal techniques that can be implemented with XRD measurements. Two different material removal techniques were studied; electrochemical etching and milling in combination with electrochemical etching. The electrochemical etching equipment was developed at SKF MDC prior to this thesis but needed further testing and validation. The residual stress profiles of induction hardened cylinders were studied using the two different removal techniques combined with XRD measurements and the results were compared with stresses measured by Electronic Speckle Pattern Interferometry (ESPI) with hole drilling. In addition, the results were compared with simulations performed at SKF MDC India. It was concluded that both the material removal methods could be successfully combined with XRD measurements. However, for practical reasons the methods should be refined before being implemented on a regular basis. Unfortunately, poor correlation between XRD and ESPI measurements were obtained due to reasons not fully understood.
|
15 |
Estudo da retificação de ultraprecisão de materiais frágeis / The study of ultraprecision grinding of brittle materialsAlmeida, Rogério Madureira de 22 March 2002 (has links)
A crescente necessidade por parte da indústria óptica e eletrônica por componentes que possuam características como elevada precisão de forma e acabamento em materiais frágeis, vem despertando um grande interesse nas pesquisas dos processos de usinagem de ultraprecisão. Neste sentido, a retificação e o torneamento de materiais frágeis com ferramentas de diamante têm se destacado como substitutos dos processos tradicionais de fabricação de precisão como a lapidação e polimento. Propõe-se o estudo da retificação de ultraprecisão de materiais frágeis através da realização de ensaios de corte em uma retificadora de ultraprecisão com rebolo de diamante de forma a estabelecer os parâmetros de corte compatível com a remoção dúctil de material. Foram usinadas amostras de silício monocristalino através de retificação tangencial de mergulho plana sob diferentes condições de usinagem para posteriormente avaliar a integridade superficial da peça. A amostra foi montada sob um aparato especial com uma inclinação conhecida a fim de se realizar um corte em cunha. Com isso, três situações distintas de remoção de material foram investigadas: totalmente dúctil, dúctil-frágil e totalmente frágil. O parâmetro de corte variado foi a profundidade de corte; o avanço e velocidade de corte foram mantidos constantes. / The requirements of components that demand high precision finishes and form in brittle materials has roused a huge interest in the ultraprecision machining process in the optical and electronic industries. The diamond grinding and turning of brittle materials have been used more and more as replacements to the tradicional lapping and polishing. The study of ultraprecision grinding of brittle materials is proposed. Cutting experiments on an ultraprecision grinding machine using a diamond wheel were carried out stablish cutting parameters compatible with ductile material removal. Silicon samples were machined through flat plunging tangencial grinding under different machining conditions and the sample surface integrity was assessed. The sample was mounted on a special apparatus with a known inclination so as to carry out a edge cutting. Thereby, three different material removal situations were investigated: whole ductile, ductile/brittle, whole brittle. The depth of cut was the parameter varied. Feedrate and cutting speed of the wheel were held constant.
|
16 |
Estudo da retificação de ultraprecisão de materiais frágeis / The study of ultraprecision grinding of brittle materialsRogério Madureira de Almeida 22 March 2002 (has links)
A crescente necessidade por parte da indústria óptica e eletrônica por componentes que possuam características como elevada precisão de forma e acabamento em materiais frágeis, vem despertando um grande interesse nas pesquisas dos processos de usinagem de ultraprecisão. Neste sentido, a retificação e o torneamento de materiais frágeis com ferramentas de diamante têm se destacado como substitutos dos processos tradicionais de fabricação de precisão como a lapidação e polimento. Propõe-se o estudo da retificação de ultraprecisão de materiais frágeis através da realização de ensaios de corte em uma retificadora de ultraprecisão com rebolo de diamante de forma a estabelecer os parâmetros de corte compatível com a remoção dúctil de material. Foram usinadas amostras de silício monocristalino através de retificação tangencial de mergulho plana sob diferentes condições de usinagem para posteriormente avaliar a integridade superficial da peça. A amostra foi montada sob um aparato especial com uma inclinação conhecida a fim de se realizar um corte em cunha. Com isso, três situações distintas de remoção de material foram investigadas: totalmente dúctil, dúctil-frágil e totalmente frágil. O parâmetro de corte variado foi a profundidade de corte; o avanço e velocidade de corte foram mantidos constantes. / The requirements of components that demand high precision finishes and form in brittle materials has roused a huge interest in the ultraprecision machining process in the optical and electronic industries. The diamond grinding and turning of brittle materials have been used more and more as replacements to the tradicional lapping and polishing. The study of ultraprecision grinding of brittle materials is proposed. Cutting experiments on an ultraprecision grinding machine using a diamond wheel were carried out stablish cutting parameters compatible with ductile material removal. Silicon samples were machined through flat plunging tangencial grinding under different machining conditions and the sample surface integrity was assessed. The sample was mounted on a special apparatus with a known inclination so as to carry out a edge cutting. Thereby, three different material removal situations were investigated: whole ductile, ductile/brittle, whole brittle. The depth of cut was the parameter varied. Feedrate and cutting speed of the wheel were held constant.
|
17 |
Predicting Machining Rate in Non-Traditional Machining using Decision Tree Inductive LearningKonda, Ramesh 01 January 2010 (has links)
Wire Electrical Discharge Machining (WEDM) is a nontraditional machining process used for machining intricate shapes in high strength and temperature resistive (HSTR) materials. WEDM provides high accuracy, repeatability, and a better surface finish; however the tradeoff is a very slow machining rate. Due to the slow machining rate in WEDM, machining tasks take many hours depending on the complexity of the job. Because of this, users of WEDM try to predict machining rate beforehand so that input parameter values can be pre-programmed to achieve automated machining. However, partial success with traditional methodologies such as thermal modeling, artificial neural networks, mathematical, statistical, and empirical models left this problem still open for further research and exploration of alternative methods. Also, earlier efforts in applying the decision tree rule induction algorithms for predicting the machining rate in WEDM had limitations such as use of coarse grained method of discretizing the target and exploration of only C4.5 as the learning algorithm.
The goal of this dissertation was to address the limitations reported in literature in using decision tree rule induction algorithms for WEDM. In this study, the three decision tree inductive algorithms C5.0, CART and CHAID have been applied for predicting material removal rate when the target was discretized into varied number of classes (two, three, four, and five classes) by three discretization methods. There were a total of 36 distinct combinations when learning algorithms, discretization methods, and number of classes in the target are combined. All of these 36 models have been developed and evaluated based on the prediction accuracy. From this research, a total of 21 models found to be suitable for WEDM that have prediction accuracy ranging from 71.43% through 100%. The models indentified in the current study not only achieved better prediction accuracy compared to previous studies, but also allows the users to have much better control over WEDM than what was previously possible. Application of inductive learning and development of suitable predictive models for WEDM by incorporating varied number of classes in the target, different learning algorithms, and different discretization methods have been the major contribution of this research.
|
18 |
Experimental and numerical investigation of laser assisted milling of silicon nitride ceramicsYang, Budong January 1900 (has links)
Doctor of Philosophy / Department of Industrial & Manufacturing Systems
Engineering / Shuting Lei / This study experimentally and numerically investigates laser assisted milling (LAMill) of silicon nitride ceramics. Experiments are conducted to study the machinability of Si3N4 under LAMill. The effects of temperature on cutting forces, tool wear, surface integrity, edge chipping and material removal mechanisms are investigated. It is shown that when temperature increases, cutting force and tool wear are significantly decreased, surface integrity is improved, chip size is increased and material removal demonstrates more plastic characteristics. The mechanisms of edge chipping at elevated temperature are investigated theoretically and experimentally. When temperature is above the softening point and below the brittle/ductile transition temperature, the mechanism is mainly through softening. When temperature is above the brittle/ductile transition temperature, toughening mechanism contributes significantly to the reduced edge chipping. The coupled effect of softening and toughening mechanisms shows that temperature range between 1200 to 1400°C has the most significant effect to reduce edge chipping.
Distinct element method (DEM) is applied to simulate the micro-mechanical behavior of Si3N4. First, quantitative relationships between particle level parameters and macro-properties of the bonded particle specimens are obtained, which builds a foundation for simulation of Si3N4. Then, extensive DEM simulations are conducted to model the material removal of machining Si3N4. The simulation results demonstrate that DEM can reproduce the conceptual material removal model summarized from experimental observations, including the initiation and propagation of cracks, chip formation process and material removal mechanisms. It is shown that material removal is mainly realized by propagation of lateral cracks in machining of silicon nitride. At the elevated temperature under laser assisted machining, lateral cracks are easier to propagate to form larger machined chips, there are fewer and smaller median cracks therefore less surface/subsurface damage, and crushing-type material removal is reduced. The material removal at elevated temperature demonstrates more plastic characteristics. The numerical results agree very well with experimental observations. It shows that DEM is a promising method to model the micro-mechanical process of machining Si3N4.
|
19 |
Modélisation et simulation du procédé de prépolissage automatique sur centre d'usinage 5 axes / Modeling and simulation of automatic pre-polishing process on 5-axis machining centerGuiot, Anthony 06 December 2012 (has links)
La réalisation de formes complexes comme les moules ou les prothèses médicales nécessite l’utilisation d’opérations de super finition pour obtenir de faibles défauts géométriques, pouvant aller jusqu’au poli-miroir. Ces opérations de pré-polissage et de polissage sont encore régulièrement réalisées manuellement. En effet, malgré des avantages en termes de répétabilité, de productivité et de qualité géométrique, les méthodes de polissage automatique sont peu utilisées car elles nécessitent une mise au point importante. Les travaux de recherche présentés participent à la maîtrise du procédé de polissage automatique tout en contrôlant la qualité géométrique des pièces. Pour parvenir à cette maîtrise, un outil de simulation de l’enlèvement de matière est mis en place. Cet outil permet de simuler l’enlèvement de matière au cours d’une opération de prépolissage réalisée sur centre d’usinage 5 axes. Il se base sur un modèle du contact obtenu entre l’outil de pré-polissage et la pièce, ainsi que sur un modèle du pouvoir abrasif intégrant l’usure et l’encrassement du disque. Cette simulation permet de vérifier la régularité de l’abrasion sur une surface et d’identifier les zones pouvant faire apparaitre des défauts macro-géométriques importants. Une méthode est également proposée pour compenser les variations du pouvoir abrasif au cours du temps. La compensation s’effectue en optimisant les consignes de vitesse d’avance et/ou de fréquence de broche le long de la trajectoire. Cette méthode de pilotage permet d’obtenir un taux d’enlèvement de matière plus constant et ainsi de réduire les défauts géométriques générés pendant une opération de prépolissage. / Complex shapes such as medical implants or injection molds require the use of super-finishing operations to minimize geometrical defects, down to mirror effect finish. These pre-polishing and polishing operations are still regularly performed manually by skilled workers. In spite of advantages in terms of repeatability, productivity and geometrical quality, automatic polishing methods are not widely used because they require systematic and significant developments. The present work contributes to enhance the automatic polishing process compared to the geometric quality of the parts. To achieve this control, a numerical simulation of material removal is implemented. This software simulates the material removal during a pre-polishing operation performed on 5-axis machining center. It is based on a contact model obtained between the pre-polishing tool and the part, as well as an abrasive model including wear of the disc. This simulation allows to check the uniformity of the material removal on the surface and to identify potential areas where macro-geometric defects appear. A method is also proposed to balance variations of the abrasive efficiency. The correction is performed by optimizing the federate and/or the spindle speed along the tool path. This method provides a constant material removal and reduces the geometrical deviations generated during pre-polishing operations.
|
20 |
Process and machine improvements and process condition monitoring for a deep-hole internal milling machineWilmot, Wessley January 2017 (has links)
Milling is a widely used cutting process, most commonly applied to machining external surfaces of workpieces. When machining operations are required within hard to reach areas of components, or deep within the bore of components, alternative methods of metal removal are generally employed. Typically when milling at extended reaches, difficulties may increase exponentially when trying to achieve distances several meters into a component. Essentially every topic of the milling process becomes difficult and more convoluted. Firstly to generate a stable cutting condition, and ultimately for an operator to be able to understand the cutting conditions, when all normal senses to interpret the machining stability are removed. The aim for the research is, to enable the operation of high slenderness ratio internal milling operations to become a viable technology, by detailing the measures required, to obtain a stable cutting condition. The process needs to be monitored for degradation of the tooling due to wear, and to prevent catastrophic machine damage from tool breakage or machine component failure. This research addresses the lack of knowledge available for milling with extended reaches, and the knowledge gained to overcome the real difficulties that exist for this process. Initial experiments are conducted on a prototype machine to gain experience of the internal machining operation and the many issues that it faced. Establishing requirements of the process via investigation of the tooling and necessary auxiliary equipment, it becomes possible to consider countermeasures to address the errors generated by torsional twisting of the milling arm. A system for applying a counter torque to reduce torsional deflection errors has been employed to successfully reduce the unavoidable issue over such long distances. For the process to become manageable for an industrial operator without a high level of specialist knowledge, the application of tool condition monitoring (TCM) and process condition monitoring (PCM) had to be applied. This addresses a void in available literature and research with respect to internal machining, and enables the process to become practical for an industrial environment. For this reason the research project will concentrate on the application of TCM and PCM onto the machining system. The completion of the research resulted in the process becoming satisfyingly stable, and with a resulting accuracy that satisfies the requirements of the component. Performance of the final system rivalled or achieved better results than had been experienced by the project sponsor.
|
Page generated in 0.073 seconds