• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 179
  • 10
  • 10
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 421
  • 421
  • 168
  • 84
  • 81
  • 79
  • 55
  • 54
  • 40
  • 37
  • 37
  • 34
  • 33
  • 32
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

II-VI Semiconductor Nanowire Array Sensors Based on Piezotronic, Piezo-Phototronic and Piezo-Photo-Magnetotronic Effects

Yan, Shuke 18 May 2018 (has links)
With the rapid progress of nanotechnologies, there are two developing trends for the next generation of sensors: miniaturization and multi-functionality. Device miniaturization requires less power consumption, or even self-powered system. Multi-functional devices are usually based on multi-property coupling effects. Piezoelectric semiconductors have been considered to be potential candidates for self-powered/multi-functional devices due to their piezotronic coupling effect. In this dissertation, ZnO and CdSe nanowire arrays have been synthesized as the piezoelectric semiconductor materials to develop the following self-powered/multi-functional sensors: (1) self-powered gas sensors of ZnO/SnO2, ZnO/In2O3, ZnO/WO3 and CdSe nanowire arrays have been assembled. All these gas sensors are capable of detecting oxidizing gas and reducing gas without any external power supply owing to piezotronic effect which can convert mechanical energies to electrical energy to power the sensors; (2) a self-powered ZnO/ZnSe core/shell nanowire array photodetector has been fabricated. This photodetector is able to detect the entire range of the visible spectrum as well as UV light because of its type II heterostructure. The absolute sensitivity and the percentage change in responsivity of the photodetector were significantly enhanced resulting from the piezo-phototronic effect. The photodetector also exhibited self-powered photodetection behavior; (3) three dimensional nanowire arrays, such as ZnO and ZnO/Co3O4, have been synthesized to investigate piezo-magnetotronic and piezo-photo-magnetotronic effects. Under magnetic field, the magnetic-induced current of ZnO nanowire array decreased as magnetic field increased, and the current difference was magnified by one order of magnitude caused by piezo-magnetotronic effect through applying a stress. In contrast, under UV light illumination, the current response increased with an increment of magnetic field. The current difference was enhanced by at least two orders of magnitude attributed to piezo-photo-magnetotronic effect. Furthermore, ZnO/Co3O4 core/shell structure was employed to further improve the magnetic-induced current difference. This phenomenon projects a potential for multi-functional piezo-magnetotronic and piezo-photo-magnetotronic device development.
272

Nanostructured Materials for Photocatalysis, Water Treatment and Solar Desalination

Kiriarachchi, Hiran D 01 January 2019 (has links)
Maintaining a constant supply of clean drinking water is among the most pressing global challenges in our time. About one-third of the population is affected by the water scarcity and it can only get worse with climate change, rapid industrialization, and the population growth. Even though nearly 70 percent of the planet is covered by water, the consumable freshwater content is only 2.5 percent of it. Unfortunately, the accessible portion of it is only 1 percent. Even so, most of the freshwater bodies are choked with pollution. Considering the vast availability of saline water on the planet and the increasing wastewater generation, seawater desalination, and wastewater treatment and recycling seem to have the potential to address current water-related issues. Therefore, it is necessary to find efficient techniques for seawater desalination and wastewater treatment. The use of nanostructured materials for these applications is becoming a popular approach due to the unique chemical and physical properties they possess compared to bulk materials Solar energy is the cleanest and most abundant renewable natural resource available. Materials for solar photothermal energy conversion are highly sought after for their cost savings, clean environment, and broad utility in providing water heating and/or steam for many applications including domestic water heating and solar-driven desalination. Extensive research efforts have been made to develop efficient solar absorbers with characteristics such as low weight, low thermal conductivity, broad solar absorption and porosity to be able to float on water to provide more efficient and cost-effective solar steam generation systems. Metal NPs have been proposed to take advantage of the high efficiency of the photothermal energy conversion associated with surface plasmon resonance absorption. Nanostructured carbon-based materials such as graphene oxide, carbon nanotubes, carbonized biomass are also in use due to their excellent photothermal energy conversion ability over the range of the visible and near infra-red region of the electromagnetic spectrum. In this dissertation, five projects based on the utility of nanostructured materials for desalination, photocatalysis and water treatment will be discussed. The first three projects involve the fabrication and design of plasmonic and carbon-based photothermal materials for applications in solar steam generation, water desalination, and wastewater treatment. In the fourth project, a unique shape of ZnO nanostructure was synthesized for photodegradation of organic dyes in industrial wastewater. The final project demonstrates the shape-controlled synthesis of iron carbide nanostructures and composite materials of aminated graphene oxide for the removal of Cr(VI) from wastewater.
273

The Investigation of Photocatalytic and Adsorptive Properties of Humic Acid Grafted Magnetite Nanoparticles for the Remediation of Arsenic, Selenium and Phosphorous from Water

Rashid, Mohammad Mamunur 11 June 2018 (has links)
The crisis of freshwater has been a big concern worldwide. Water contamination that occurs through the discharge of toxic pollutants from different natural and anthropogenic sources have worsened the situation. Adsorption has emerged as a simple and economical water treatment procedure although the challenge is to find the right adsorbent that can efficiently remove the target contaminant followed by their easy recovery from the reaction vessel. In this dissertation, I have focused on the synthesis, characterizations and applications of environmentally compatible and magnetic humic acid coated magnetite nanoparticles (HA-MNP) as a potential adsorbent for water purification. Phosphate is an essential nutrient for many plants and organisms in the environment. However, it can also cause water pollution when present in excess amounts. The adsorption experiments showed that the laboratory synthesized nanoparticles (HA-MNP) can remove more than 90% of phosphate from water mainly through the mechanism of chemisorption. The overall removal process is spontaneous, endothermic and favorable. Water contamination by arsenic is considered one of the biggest natural disasters in human history. In the study, HA-MNP has been applied for the successful trapping and separation of two highly toxic inorganic As species, As(III) and As(V) from water. The removal of As(V) was faster than As(III) for the same initial arsenic concentration and HA-MNP loading. The binding of As species is mainly attributed to three different phases, rapid surface association, intraparticle diffusion and equilibrium adsorption. Selenium is a micronutrient for humans that can be toxic at modest concentrations. The remediation of toxic selenium species, Se(IV) and Se(VI) by using HA-MNP has been found effective under a variety of environmental conditions except at highly alkaline pH and the presence of sulfate and phosphate in aqueous solution. Selenite or Se(IV) forms strong inner sphere complexes while Se(VI) forms relatively weaker outer sphere complexes with the adsorbent sites. The oxidation and adsorption of As(III) is explored by using the photocatalytic and adsorptive behavior of HA-MNP. The higher removal efficiency is attained through the reactive oxygen species mediated photo-conversion As(III) to As(V). Combination of oxygen and 350 nm light provides the best results.
274

Failure mechanisms in APS and SPS thermal barrier coatings during cyclic oxidation and hot corrosion

Jonnalagadda, Krisha Praveen January 2017 (has links)
Thermal Barrier Coatings (TBCs) are advanced material systems that are being used in the hot sections of gas turbines such as combustor, turbine blades, and vanes. The top ceramic coating in TBCs provides insulation against the hot gases and the intermediate metallic bond coat provides oxidation and corrosion resistance to the underlying turbine components. Durability of thermal barrier coatings is very important for the overall performance of the gas turbine. TBCs can fail in several different ways and there is a combination of more than one failure mechanism in most situations. One of the most widely used TBC is atmospheric plasma sprayed (APS) yttria stabilized zirconia (YSZ). Both the deposition technique and the TBC material have certain limitations. The main aim of this research is to study new TBC materials and/or new deposition techniques and compare with the conventional YSZ and understand their failure mechanisms during cyclic oxidation and hot corrosion. Thermal cyclic oxidation of a newly developed high purity nano YSZ thermal barrier coating has been studied. Cross sectional analysis of exposed as well as completely failed samples showed a mixed-type failure caused by crack propagation parallel to the bond coat/top coat interface. The majority of the damage occurred towards the end of the coating life. A finite element model has been developed to study the probability of crack growth along different paths that leads to the final failure. Hot corrosion mechanism in suspension plasma sprayed two-layer gadolinium zirconate/YSZ, three-layer dense gadolinium zirconate/gadolinium zirconate/YSZ, and a single-layer YSZ has been studied in the presence of sodium sulfate and vanadium pentoxide. The test results showed that gadolinium zirconate coatings were more susceptible to corrosion compared to YSZ coatings despite gadolinium zirconate coatings having lower reactivity with the corrosive salts. Thermal cycling behavior of a high chromium bond coat has been studied. Cross-sectional analysis showed formation of sandwich type microstructure with chromium rich oxide and alumina as the top and the bottom layers. Inter-diffusion of minor elements between different MCrAlY coatings – substrate systems has been studied using, diffusion simulation software, DICTRA. The simulation results showed that the diffusion of minor elements in the coatings is dependent on the rate of β phase depletion in the beginning. After the depletion of β phase there was no clear dependence of the coating composition on the diffusion of minor elements.
275

Synthesis and Structures of New Three-Dimensional Copper Metal-Organic Frameworks

Pally, Nitin Kumar 01 December 2013 (has links)
Metal-organic frameworks (MOFs) are crystalline materials with metal ions covalently bonded to organic ligands. The ligands act as spacers often creating a porous structure with very high pore volume and surface area. MOFs are known for their robust structures, high porosity, and different chemical functionalities and are considered for applications in adsorptions, separations, catalysis and gas storage. This work focuses on the synthesis of new MOFs using copper compounds. Different types of carboxylate ligands were used for the synthesis. Two new copper-organic frameworks, [Cu3(pyz)(btc)] (1), and [(Cu3(btc))•xH2O] (2) (btc= benzene-1,3,5-tricarboxylate, pyz= pyrazine) have been synthesized using hydro/solvothermal methods and have been characterized using X-ray diffraction, IR, TGA, fluorescence and CHN analysis.
276

PERIODIC MESOPOROUS ORGANOSILICA: PREPARATION CHARACTERIZATION AND APPLICATIONS OF NOVEL MATERIALS

DICKSON, STEVEN E 14 March 2011 (has links)
There is currently a great interest in the field of porous organosilica materials because of the high surface areas (> 1000 m²/g) and narrow pore size distributions which are beneficial for applications such as chromatography, chiral catalysis, sensing or selective adsorption. Periodic mesoporous organosilicas (PMOs) represent an interesting class of hybrid silica materials because of the wide variety of bridging organic groups which can be incorporated within the precursors [(OR)3Si-R-Si(OR)3] giving rise to materials with exceptional properties. We have synthesized and characterized various aromatic PMOs composed of supporting structural monomers (phenylene- or biphenylenebridged) and functional stilbene monomers (cis and trans) (1, 2). The effect of the different synthetic procedures and varying amounts of functional stilbene monomer on the properties of the materials was examined. The functional transstilbene component was determined to be well distributed in a phenylene-bridged PMO using P123 as a pore template from TEM techniques with Os staining. The trans-stilbene linkers were completely transformed to aryl aldehydes through ozonolysis with dimethylsulfide workup. Further transformation of the carbonyl functionality to an aryl imine showed a moderate level of success. Enantiomeric forms of a novel, chiral PMO precursor (CM) were synthesized and incorporated into biphenylene-bridged PMOs. Under basic pH conditions templated with C18TMACl, although very low levels of CM are incorporated, enantiomeric forms of chiral, porous materials are obtained as was verified by distinct mirror-image circular dichroism spectra. Powder XRD patterns suggest that a tightly packed asymmetric biphenylene arrangement may be necessary for the optical activity. Preliminary results using these materials as a chiral chromatographic phase are promising. Finally, a thin film morphology of an ethane-bridged PMO incorporating a thiol ligand, (3-mercaptopropyl)trimethoxysilane, was prepared on a fibre optic cable and used as a component in a heavy-metal sensing application. / Thesis (Ph.D, Chemistry) -- Queen's University, 2011-03-11 17:24:48.997
277

Stimulus-responsive Microgels: Design, Properties and Applications

Das, Mallika 31 July 2008 (has links)
Materials science today is a multidisciplinary effort comprising an accelerated convergence of diverse fields spanning the physical, applied, and engineering sciences. This diversity promises to deliver the next generation of advanced functional materials for a wide range of specific applications. In particular, the past decade has seen a growing interest in the development of nanoscale materials for sophisticated technologies. Aqueous colloidal microgels have emerged as a promising class of soft materials for multiple biotechnology applications. The amalgamation of physical, chemical and mechanical properties of microgels with optical properties of nanostructures in hybrid composite particles further enhances the capabilities of these materials. This work covers the general areas of responsive polymer microgels and their composites, and encompasses methods of fabricating microgel-based drug delivery systems for controlled and targeted therapeutic applications. The first part of this thesis is devoted to acquainting the reader with the fundamental aspects of the synthesis, functionalization and characteristic properties of stimulus-responsive microgels constructed from poly(N-isopropylacrylamide) (poly(NIPAm)) and other functional comonomers. In particular, the role of electrostatics on the swelling-deswelling transitions of polyampholyte microgels upon exposure to a range of environmental stimuli including pH, temperature, and salt concentration are discussed. The templated synthesis of bimetallic gold and silver nanoparticles in zwitterionic microgels is also described. The latter part of this thesis focuses on the rational development of microgel-based drug delivery systems for controlled and targeted drug release. Specifically, the development of a biofunctionalized, pH-responsive drug delivery system (DDS) is illustrated, and shown to effectively suppress cancer cells when loaded with an anticancer agent. In another chapter, the design of tailored hybrid particles that combine the thermal response of microgels with the light-sensitive properties of gold nanorods to create a DDS for photothermally-induced drug release is discussed. The photothermally-triggered volume transitions of hybrid microgels under physiological conditions are reported, and their suitability for the said application evaluated. In another component of this work, it is explicitly shown that electrostatic interactions were not needed to deposit gold nanorods on poly(NIPAm)-derived particles, thereby eliminating the need for incorporation of charged functional groups in the microgels that are otherwise responsible for large, undesirable shifts and broadening of the phase transition.
278

Methods to create compressive stress in high strength steel components

Abdin, Amir, Feyzabi, Kaveh, Hellman, Oskar, Nordström, Henrietta, Rasa, Dilman, Thaung Tolförs, Gustav, Öqvist, Per-Olof January 2018 (has links)
Residual compressive stresses can be used to increase the lifetime of parts under cyclic stress as they negate the applied tensile stresses that cause crack initiation and propagation in the material. The goal of this project was to investigate methods to induce stresses, their advantages and disadvantages as well as depth and magnitude of induced stresses, and also to find methods of analyzing the induced residual stresses. This was done on behalf of Epiroc Drilling Tools AB in order for them to induce stresses on the insides of their long, narrow and hollow rods, where stress induction is difficult. Shot peening was used as a reference as that is the method currently in use by the company. The results show that the two most promising methods are cavitation peening and laser shock peening; two relatively new methods with large magnitudes and depth of induced stress as well as a great capability of inducing stresses on the hard-to-reach insides of the rods. Ultrasonic needle peening, ultrasonic shot peening as well as induction hardening, cryogenic treatment and friction stir processing were also investigated. Methods of analyzing the stresses include X-ray diffraction and slitting, hole drilling and ultrasonic methods.
279

New bipolar organic materials for optoelectronic applications

Linton, Katharine Elizabeth January 2012 (has links)
The literature surrounding organic small-molecule donor-acceptor systems is summarised for a range of optoelectronic applications (OLEDs, OPVs, OFETs etc.). There is a focus on the key building blocks: 1,3,4-oxadiazole (OXD), diphenylamine (DPA), carbazole (Cbz) and fluorene (F). The incorporation of such moieties into various donor-acceptor systems is discussed with further reference to selected alternative organic donor and acceptor systems. The syntheses of novel bipolar molecules based on a donor-spacer-acceptor (DPA/Cbz-F-OXD) structure and the incorporation of these molecules into single-layer OLEDs is presented. It is demonstrated how the emission colour can be tuned from green to deep blue by systematic manipulation of the structure. A significant result is that high efficiency accompanied with pure, deep blue emission in single-layer OLEDs can be achieved with this structural motif. The incorporation of these materials as part of a simple two-component blend to produce white OLEDs is presented and the modification of the materials to improve electron-transport properties is discussed. The synthesis of DPA-bridge-OXD wire systems is presented with the use of oligo-p-phenyleneethynylene units as a bridge of varying length to investigate the effect on charge transfer between the donor and acceptor. Photophysical studies demonstrate the change in absorption, emission and fluorescence lifetimes as the length scale of the molecules is altered. The synthesis of a series of planarised and twisted DPA-bridge-OXD systems based upon phenylene linkers is discussed. Finally, a series of DPA-F-OXD-anchor molecules is presented for incorporation into DSSC devices. The synthesis of these materials is described and the suitability of various anchoring groups for DSSCs is analysed through photophysical and device studies.
280

Exploration of Non-Aqueous Metal-O2 Batteries via In Operando X-ray Diffraction

Liu, Chenjuan January 2017 (has links)
Non-aqueous metal-air (Li-O2 and Na-O2) batteries have been emerging as one of the most promising high-energy storage systems to meet the requirements for demanding applications due to their high theoretical specific energy. In the present thesis work, advanced characterization techniques are demonstrated for the exploration of metal-O2 batteries. Prominently, the electrochemical reactions occurring within the Li-O2 and Na-O2 batteries upon cycling are studied by in operando powder X-ray diffraction (XRD). In the first part, a new in operando cell with a combined form of coin cell and pouch cell is designed. In operando synchrotron radiation powder X-ray diffraction (SR-PXD) is applied to investigate the evolution of Li2O2 inside the Li-O2 cells with carbon and Ru-TiC cathodes. By quantitatively tracking the Li2O2 evolution, a two-step process during growth and oxidation is observed. This newly developed analysis technique is further applied to the Na-O2 battery system. The formation of NaO2 and the influence of the electrolyte salt are followed quantitatively by in operando SR-PXD. The results indicate that the discharge capacity of Na-O2 cells containing a weak solvating ether solvent depends heavily on the choice of the conducting salt anion, which also has impact on the growth of NaO2 particles. In addition, the stability of the discharge product in Na-O2 cells is studied. Using both ex situ and in operando XRD, the influence of sodium anode, solvent, salt and oxygen on the stability of NaO2 are quantitatively identified. These findings bring new insights into the understanding of conflicting observations of different discharge products in previous studies. In the last part, a binder-free graphene based cathode concept is developed for Li-O2 cells. The formation of discharge products and their decomposition upon charge, as well as different morphologies of the discharge products on the electrode, are demonstrated. Moreover, considering the instability of carbon based cathode materials, a new type of titanium carbide on carbon cloth cathode is designed and fabricated. With a surface modification by loading Ru nanoparticles, the titanium carbide shows enhanced oxygen reduction/evolution activity and stability. Compared with the carbon based cathode materials, titanium carbide demonstrated a higher discharge and charge efficiency.

Page generated in 0.0593 seconds