• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 177
  • 10
  • 10
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 419
  • 419
  • 168
  • 83
  • 81
  • 79
  • 55
  • 54
  • 40
  • 37
  • 37
  • 33
  • 33
  • 32
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Influence of level of cellulose oxidation and surface treatment on the adhesion between cellulose beads / Inverkan av oxidationsnivå och ytbehandling av cellulosasfärer på molekylär adhesion mellan kulorna

Källgren, Rasmus January 2020 (has links)
With the growing impact of climate change on both political decisions and how companies develop their products, it is increasingly important to find environmentally friendly alternatives to fossil-based materials. One of the more interesting materials in this respect is cellulose, which is the world's most naturally occurring polymer and can be used in a variety of applications. One way to modify the fibers and to change their properties is to use a method called Layer-by-Layer (LbL) treatment where two polymers of opposite charge are alternately adsorbed to the fiber surface. Another possibility is to oxidize the cellulose in the fibers to obtain a higher charge. This means that the fibers can adsorb a higher amount of cationic additives and that the fibers swell more which means that they are plasticized and can create stronger joints between the fiber surfaces in the dry state, which results in stronger dry fiber networks. However, wood-based fibers are small and inhomogeneous, both chemically and morphologically, which means that it is necessary to use model systems to be able to clarify, in detail, how treated and untreated surfaces interact with each other at a molecular level. One model system that can be used to investigate how cellulose fibers are affected by coating using the LbL method is to use spherical beads made from regenerated cellulose. In the present work, these beads were treated with polyallylamine hydrochloride (PAH) and hylauronic acid (HA) as well as with PAH and alginate (Alg) before being allowed to dry together and then subjected to tensile testing to clarify the adhesion between the surfaces. The beads were treated with five and ten bi-layers of these polymers, respectively, and then dried together on an AKD-coated surface, to avoid adhesion to the underlying surface, to examine the adhesion between the beads. The adhesion increased when treated with LbL and became higher upon adsorption of multiple layers of polyelectrolytes and the Alg / PAH system showed the greatest increase. Ten-layer samples of Alg / PAH were also tested after a solution of calcium chloride was added during drying, resulting in poorer adhesion between the beads. / Med klimatfrågans växande inverkan på både politiska beslut och hur företagen utvecklar sina produkter så läggs det allt större vikt vid att hitta miljövänliga alternativ till fossilbaserade material. Ett av de mer intressanta materialen är cellulosa vilket är världens mest naturligt förekommande polymer och som kan användas i en rad olika tillämpningar. Ett sätt att modifiera fibrerna och att ändra deras egenskaper är att använda sig av en metod som kalls Layer-by-layer (LbL) behandling där två polymerer mot motsatt laddning växelvis adsorberas till fiberytan. En annan möjlighet är att oxidera cellulosan i fibrerna så att de erhåller de en högre laddning. Detta innebär dels att fibrerna kan adsorbera en högre mängd katjoniska tillsatskemikalier samt att fibrerna sväller mera vilket innebär att de plasticeras och kan skapa starkare fogar mellan fiberytorna i torrt tillstånd vilket resulterar i starkare torra fibernätverk. Vedbaserade fibrer är dock små och inhomogena såväl kemiskt som morfologiskt vilket innebär att det är nödvändigt att använda modellsystem för att kunna klarlägga, i detalj, hur behandlade och icke behandlade ytor växelverkar med varandra på en molekylär nivå. Ett modellsystem som kan användas för att undersöka hur cellulosafibrer påverkas av att beläggas med hjälp av LbL metoden är att använda sig av sfäriska kulor tillverkade från regenererad cellulosa. I föreliggande arbete behandlades dessa kulor med polyallylaminhydroklorid (PAH) och hylauronsyra (HA) samt med PAH och alginat (Alg) innan de tilläts torka ihop och därefter utsattes för dragprovning för att klarlägga adhesionen mellan ytorna. Kulorna behandlades med fem respektive tio bilager av dessa polymerer och torkades sedan ihop på en AKD-belagd yta, för att undvika adhesion till den underliggande ytan, för att undersöka adhesionen mellan kulorna. Adhesionen ökade när de behandlades med LbL och blev högre vid adsorption av flera lager polyelektrolyter och systemet med Alg/PAH resulterade i den största ökningen. Prover med tio lager av Alg/PAH testades även efter att en lösning av kalciumklorid tillsattes under torkningen vilket resulterade i en sämre adhesion mellan kulorna.
302

Synthesis of nanostructured and hierarchical materials for bio-applications

Ye, Fei January 2011 (has links)
In recent years, nanostructured materials incorporated with inorganic particles and polymers have attracted attention for simultaneous multifunctional biomedical applications. This thesis summarized three works, which are preparation of mesoporous silica coated superparamagnetic iron oxide (Fe3O4@mSiO2) nanoparticles (NPs) as magnetic resonance imaging T2 contrast agents, polymer grafted Fe3O4@mSiO2 NPs response to temperature change, synthesis and biocompatibility evaluation of high aspect ratio (AR) gold nanorods. Monodisperse Fe3O4@mSiO2 NPs have been prepared through a sol-gel process. The coating thickness and particle sizes can be precisely controlled by varying the synthesis parameters. Impact of surface coatings on magnetometric and relaxometric properties of Fe3O4 NPs is studied. The efficiency of these contrast agents, evaluated by MR relaxivities ratio (r2/r1), is much higher than that of the commercial ones. This coating-thickness dependent relaxation behavior is explained due to the effects of mSiO2 coatings on water exclusion. Multifunctional core-shell composite NPs have been developed by growing thermo-sensitive poly(N-isopropylacrylamide-co-acrylamide) (P(NIPAAm-co-AAm)) on Fe3O4@mSiO2 NPs through free radical polymerization. Their phase transition behavior is studied, and their lower critical solution temperature (LCST) can be subtly tuned from ca. 34 to ca. 42 °C, suitable for further in vivo applications. A seedless surfactant-mediated protocol has been applied for synthesis of high AR gold nanorods with the additive of HNO3. A growth mechanism based on the effect of nitrate ions on surfactant micelle elongation and Ostwald ripening process is proposed. The biocompatibility of high AR nanorods was evaluated on primary human monocyte derived dendritic cells (MDDCs). Their minor effects on viability and immune regulatory markers support further development for medical applications. / QC 20110701
303

Improving Hybrid Solar Cells: Overcoming Charge Extraction Issues in Bulk Mixtures of Polythiophenes and Zinc Oxide Nanostructures

Olson, Grant T 01 June 2014 (has links) (PDF)
Organic photovoltaics (OPVs) have received a great deal of focus in recent years as a possible alternative to expensive silicon based solar technology. Current challenges for organic photovoltaics are centered around improving their lifetimes and increasing their power conversion efficiencies. One approach to improving the lifetime of such devices has been the inclusion of inorganic metal oxide layers, but interaction between the metal oxides and common conjugated polymers is not favorable. Here we present two methods by which the interactions between polythiophenes and nanostructured ZnO can be made to be more favorable. Using the first method, direct side on attachment of polythiophene to ZnO nanowires via chemical grafting, we demonstrate chemical linkage between the polymer and ZnO phases. The attachment was confirmed to affect the morphological properties of the polymer layer as well, inducing highly ordered regions of the polymer at the ZnO surface via chemical attachment and physical adsorption. Using the second method to improve polythiophene ZnO interactions, we have functionalized ZnO nanowires with organic molecules that favorably interact with conjugated polymer and organic solvents. Photovoltaic devices were made using a blended active layer of functionalized ZnO nanowires and P3HT. Electrical analysis of the resultant devices concluded that the devices were functional photovoltaic cells and isolated the dominant loss mechanisms for further device improvement.
304

Effect of Surfactant Architecture on Conformational Transitions of Conjugated Polyelectrolytes

Braggin, Greg A. 01 June 2015 (has links) (PDF)
Water soluble conjugated polyelectrolytes (CPEs), which fall under the category of conductive polymers, possess numerous advantages over other conductive materials for the fabrication of electronic devices. Namely, the processing of water soluble conjugated polyelectrolytes into thin film electronic devices is much less costly as compared to the processing of inorganic materials. Moreover, the handling of conjugated polyelectrolytes can be performed in a much more environmentally friendly manner than in the processing of other conjugated polymers because conjugated polyelectrolytes are water soluble, whereas other polymers will only dissolve in toxic organic solvents. The processing of electronic devices containing inorganic constituents such as copper indium gallium selenide (CIGS), is much more expensive and poses much greater environmental risks because toxic metals may be released into landfills or waterways upon cell disposal.75 Because conjugated polyelectrolytes enjoy an assortment of advantages over other materials for the manufacturing of thin film electronic devices, there is globally vested interest in the researching of their properties. Despite the fact that CPEs can serve as efficient electron transport mediums, devices such as organic solar cells cannot realize their highest efficiencies unless the morphology of CPEs is precisely controlled. Charged surfactants can electrostatically and ionically interact with CPEs, and when introduced in specific concentrations, molar ratios, and temperature ranges, will aid in a ‘coil to rod’ transition of the CPE, wherein polymer chains undergo intramolecular transitions to obtain rigid-rod morphologies. The kinetics and thermodynamics of the ‘coil to rod’ transition are heavily dependent upon the type(s) of charged surfactant complexed with the CPE (i.e. on the surfactant architecture). By performing UV/Vis Spectroscopy and Fluorometry on dilute polymer/surfactant solutions, Polarized Optical Microscopy (POM) and Small Angle X-Ray Scattering (SAXS) on high concentration polymer/surfactant solutions, and Differential Scanning Calorimetry (DSC) and X-Ray Diffraction (XRD) on solid-state polymer/surfactant samples, the role of various surfactant architectures on the kinetics and thermodynamics of the ‘coil to rod’ transition was studied. The liquid crystalline physical properties and the extent of solid state crystallinity were also investigated. Through an analysis of the data obtained from these various techniques, it was found that the ‘coil to rod’ transition is progressively favored when the alkyl chain length of a single tailed surfactant is sequentially increased, and that as the concentration of double-tailed surfactant increases, the ‘coil to rod’ transition is negated.
305

Characterisation of Poly(trimethylene carbonate) and f-BTI2g-TVTCN blends for the use in Biosensors / Karakterisering av poly(trimetylenkarbonat) och f-BTI2g-TVTCN blandningar för användning inom biosensorer

El Ghamri, Sara, Kammeby, Ed, Göransson, Herman, Stjerngren, Arvid January 2023 (has links)
This report aims to study the degradation of poly(trimethylene carbonate) (PTMC) caused by the enzyme carboxylesterase in vitro. As well as to characterise polymer blends of f-BTI2g-TVTCN and poly(3-hydroxybutyric acid) as core components for organic electrochemical transistors (OETCs). This is to assess the suitability of these polymers in biodegradable biosensors. The degradation study of PTMC showed a lack of degradation in contrast to previous studies performed on the material; previous studies recorded a mass loss of between (5-8)% after two months. The cause for this discrepancy is still unknown but the evidence points to both systematic faults in the gravimetric analysis as well as random errors found in the equipment. The OECT showed that increasing the PHB fraction in the polymer blend resulted in a higher output. The most stable device consisted of a 1:6 blend of f-BTI2g-TVTCN to PHB. Fewer tests were conducted on the 1:10 blend because two devices were damaged during the experiment. The statistical impact of the smaller sample size cannot be overstated so further testing should be conducted to verify the results.
306

The effect of fiber structure on chemical modification of cellulosic fibers / Effekten av fiberstruktur för kemisk modifiering av cellulosafibrer

Palm, Hedvig, Palmér, Linn, Törnqvist, Emil, de Potocki, Alexander January 2023 (has links)
För att skapa ett hållbart samhälle måste material av fossilt ursprung ersättas med förnyelsebara och miljövänliga alternativ. Ett sådant alternativ är cellulosa från vedfibrer, som har stor potential att kunna ersätta många fossila material i framtiden. För att kunna uppnå detta behöver cellulosans egenskaper först modifieras för att passa olika ändamål och helt kunna ersätta fossila alternativ. I detta kandidatexamensprojekt modifierades blekt sulfatmassa, oblekt sulfatmassa, dissolvingmassa och kemitermomekanisk massa (CTMP) genom att introducera kvartära aminer med hjälp av två olika reagens, 2,3-epoxypropyltrimetylammoniumklorid (EPTMAC) och 3-kloro-2-hydroxypropyltrimetylammoniumklorid (CHPTAC). Under projektet undersöktes reagensens reaktionseffektivitet för de olika massorna genom att mäta substitutionsgraden (DS), hur förbehandling i form av torkning och malning påverkar modifieringsreaktionen och den modifierade massans egenskaper, utgångsmassornas svällningsegenskaper, samt mekaniska egenskaper som e-modul, brottstyrka och brottöjning hos pappersark tillverkade av modifierad massa. Resultaten från studien visar att det reaktionseffektivaste reagenset var CHPTAC som gav upphov till en genomgående högre effektivitet än samtliga modifieringar med EPTMAC, men att effektiviteten för respektive reagens är mindre beroende av pappersmassans komposition. Modifiering resulterade i att alla massor fick högre styrka i form av e-modul, brottstyrka och brottöjning. De mekaniska egenskaperna följde inte samma trend som substitutionsgraderna, vilket var oväntat. För att kunna dra mer pålitliga slutsatser skulle ytterligare studier behöva genomföras, inklusive upprepade modifieringar med varierande mängd reagens, mekaniska tester samt analys av ytterligare egenskaper som fibrernas ytor, kristallstruktur och längden på cellulosafibrerna.
307

Synthesis of glass-ceramic Li2S-P2S5-based electrolyte for solid-state batteries / Syntes av glaskeramisk Li2S-P2S5 elektrolyt för fastfasbatterier

Sjörén, Leo January 2023 (has links)
In this project, solid sulphur based Li3PS4 electrolytes doped with Li4SiO4 were synthesised using two methods. In method A, a bought β-Li3PS4 electrolyte from Nei Corp was doped with 5 mole per cent Li4SiO4, resulting in a glass-ceramic electrolyte. In method B, the electrolyte was synthesised using 5Li4SiO4-95(75Li2S-25P2S5), resulting in a glassy material. In addition, a reference was synthesised using 75Li2S-25P2S5. Ball milling was the method of choice to dope the glass ceramic electrolyte and synthesise the glassy electrolyte. The dopant Li4SiO4 was synthesised using the chemicals SiO2 and Li2CO3. All samples were analysed using Raman, XPS, XRD, and EIS. In the end, it was found that doping the bought β-Li3PS4electrolyte with Li4SiO4 increased the ionic conductivity. While introducing Li4SiO4 to the glassy electrolyte lowered the ionic conductivity. The increase in ionic conductivity in the glass ceramic electrolyte was partly attributed to the increase in amorphous content, which happened when it was ball-milled and suppressed P-S-P bonds. The decrease in ionic conductivity that happened when doping the glassy material, is most likely caused by residual Li2S that seems unable to react due to the dopant.
308

Operando detection of Li-plating by online gas analysis and acoustic emission monitoring

Espinoza Ramos, Inti January 2023 (has links)
Lithium ion batteries (LIBs) are widely used for storing and converting chemical energy into electrical energy. During battery operation, lithium ions move between electrode materials, enabling energy storage. However, aging mechanisms like lithium plating can negatively impact battery performance and lifetime. Lithium plating occurs when lithium ions are reduced to metallic lithium on the graphite electrode. The undesired Li plating in LIBs leads to dendrite formation that may puncture the separator, causing internal short-circuit and ultimately thermal runaway. This study aims to investigate the internal processes of LIBs during charge and discharge. Two analysis methods are employed: online electrochemical mass spectrometry (OEMS) and acoustic emission monitoring (AEM). OEMS is a gas analysis technique that combines electrochemical measurements with mass spectrometry to provide real-time testing of cells. OEMS allows identifying and quantifying gas evolution/consumption of chemical species. AE is a diagnostic tool, offering monitoring the health of LIBs through detection and characterisation of stress waves produced by parasitic mechano-electrochemical events. The results indicates that the formation of SEI thin film layer, generated gases like hydrogen and ethylene, while consuming carbon dioxide. During induced lithium plating, hydrogen and carbon dioxide were consumed, and ethylene gas was produced, due to new SEI film formation process. The acoustic emission analysis indicated that lithium plating was an active process, whereas SEI formation was less AE active. Further research is needed to understand the relationships and significance of these processes for battery performance and safety. Overall, this study highlighted the importance of investigating aging mechanisms in LIBs to enhance their performance and longevity. By combining OEMS and AE, it was possible to analyse the batteries behaviour during cycling. The evolution of gas and acoustic signals provided insights into the reactions and processes occurring inside the battery during cycling.
309

Effect of different silanes’ composition on physico-chemical characteristics of silica particles synthesized via one step preparation method

Firsching, Matilda, Heinö, Evelina, Naij, Saga, Scullman, Christoffer, Sinnott, Oliver, Svensson, Ingrid January 2022 (has links)
No description available.
310

Conversion of Microcrystalline Cellulose to Hexane Using Hydrogenated Metal Oxides at Low Temperature and Pressure

Osman, Mubarak 01 May 2024 (has links) (PDF)
Increasing global energy demand and environmental concerns have fueled the exploration of sustainable and efficient methods for renewable fuel production. The conversion of cellulosic waste to hydrocarbon fuels using hydrogenated metal oxides presents a novel and eco-friendly approach to sustainably address energy demand. In this study, hydrogenated metal oxides were used as catalysts in a relatively low-temperature and atmospheric-pressure environment to facilitate the conversion of cellulosic waste into hydrocarbon fuels. Hydrogenated metal oxides have been introduced as potential hydrogen transfer catalysts. The expected result is the selective conversion of cellulose to hexane at relatively low temperatures, which significantly reduces energy consumption compared to traditional high temperature conversion techniques. The use of XPell R resulted in 2,000 ppm hexane in dodecane. Although the use of hydrogenated metal oxides for cellulosic waste conversion is promising, ongoing research and optimization efforts are crucial to enhance the catalyst efficiency and increase the yield.

Page generated in 0.1141 seconds