• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 276
  • 212
  • 46
  • 22
  • 17
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 641
  • 641
  • 322
  • 153
  • 123
  • 89
  • 88
  • 87
  • 83
  • 80
  • 61
  • 59
  • 51
  • 51
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Méthodes innovantes en contrôle non destructif des structures: applications à la détection de fissures

Boukari, Yosra 20 January 2012 (has links) (PDF)
L'application des problèmes inverses de diffraction à la détection de fissures via l'utilisation d'ondes acoustiques, électromagnétiques ou élastiques s'élargit dans de nombreux domaines. Des exemples d'application incluent le contrôle non destructif, la prospection géophysique... Cette thèse a pour objectif d'identifier des fissures en utilisant des méthodes d'échantillonnage bien connues. Dans ce travail, nous utilisons la Linear Sampling Method et la méthode de Factorisation pour reconstruire la géométrie de fissures à partir de plusieurs données statiques de champs lointains dans le cas de conditions d'impédance sur les deux bords de la fissure se trouvant dans un domaine homogène. Par ailleurs, une application de la méthode de la Reciprocity Gap Linear Sampling Method est proposée pour la reconstruction de la géométrie de fissures dans un domaine hétérogène avec les mêmes conditions au bord. Dans le but d'élargir l'application de cette dernière méthode, une méthode de complétion de données pour le problème de Cauchy associé à l'équation de Helmholtz a été proposée. La performance des méthodes proposées est montrée à travers de tests numériques pour différentes formes de fissures et pour différentes valeurs de l'impédance.
262

On the Local and Global Classification of Generalized Complex Structures

Bailey, Michael 20 August 2012 (has links)
We study a number of local and global classification problems in generalized complex geometry. Generalized complex geometry is a relatively new type of geometry which has applications to string theory and mirror symmetry. Symplectic and complex geometry are special cases. In the first topic, we characterize the local structure of generalized complex manifolds by proving that a generalized complex structure near a complex point arises from a holomorphic Poisson structure. In the proof we use a smoothed Newton’s method along the lines of Nash, Moser and Conn. In the second topic, we consider whether a given regular Poisson structure and transverse complex structure come from a generalized complex structure. We give cohomological criteria, and we find some counterexamples and some unexpected examples, including a compact, regular generalized complex manifold for which nearby symplectic leaves are not symplectomorphic. In the third topic, we consider generalized complex structures with nondegenerate type change; we describe a generalized Calabi-Yau structure induced on the type change locus, and prove a local normal form theorem near this locus. Finally, in the fourth topic, we give a classification of generalized complex principal bundles satisfying a certain transversality condition; in this case, there is a generalized flat connection, and the classification involves a monodromy map to the Courant automorphism group.
263

Chaos, entropie et durée de vie dans les systèmes classiques et quantiques.

Saberi Fathi, Seyed Majid 19 July 2007 (has links) (PDF)
Dans cette thèse, nous étudions un modèle de décroissance (decay) d'un système quantique à plusieurs niveaux appelé le modèle de Friedrichs. Dans un premier travail, nous considérons un couplage d'un kaon avec un environnement décrit par un continuum d'énergie. On montre que les oscillations du kaon entre les états K_1, K_2, leur decay et la violation CP sont bien décrits par ce type de modèle. Ensuite, nous appliquons à ce modèle le formalisme de l'opérateur de temps qui décrit la résonance, c'est-à-dire la probabilité de survie des états instables. Enfin, nous considérons un gaz de Lorentz comme un ensemble de boules de billard avec des collisions élastiques contre des obstacles et un système de sphères dures en dimension 2. Nous étudions la simulation numérique de la dynamique du système et calculons l'augmentation de l'entropie de non-équilibre au cours du temps sous l'effet des collisions et sa relation avec les exposants de Lyapounov positifs.
264

Fonctions de corrélation des chaînes de spin. Approche de l'ansatz de Bethe algébrique

Kitanine, N. 19 September 2007 (has links) (PDF)
Dans ce mémoire d'habilitation je présente mes travaux recents sur les chaînes de spin quantiques. Les chaînes de spin constituent l'exemple le plus fondamental de modèles intégrables quantiques. Ces modèles ont plusieurs applications directes en théorie de la matière condensée, en physique statistique, en optique quantique, en théorie des champs et même en théorie des cordes mais ils sont aussi très importants car ils donnent une possibilité unique de traiter de manière exacte des phénomènes non perturbatifs inaccessibles par les autres moyens. Dans ce cadre le problème central de la théorie moderne des systèmes intégrables concerne le calcul explicite des fonctions de corrélation et des facteurs de forme et leur analyse asymptotique.<br /><br />La méthode présentée dans ce mémoire est basée sur l'ansatz de Bethe algébrique. Je montre comment cette méthode peut être utilisée pour le calcul des fonctions de corrélation à température nulle de la chaîne de spin 1/2 de Heisenberg. Le point principal de cette approche est la solution du problème inverse quantique obtenue pour la chaîne de spin 1/2 XXZ. Cette solution ainsi qu'une formule simple pour les produits scalaires des états de Bethe nous a permit d'obtenir les fonctions de corrélation les plus fondamentales ("les blocs élémentaires") sous forme d'intégrales multiples. <br /><br />Ces représentations sous forme d'intégrales multiples permettent de faire un analyse asymptotique pour quelques quantités physiques (probabilité de formation du vide) et même, dans certains cas particuliers, de les calculer d'une manière exacte.<br /><br />Il est possible d'obtenir à partir de ces représentations des résultats pour les fonctions à deux points, c'est à dire les fonctions de corrélation les plus importantes pour les applications. Un lien est établi entre ces intégrales multiples et les sommes de facteurs de forme. Ce résultat est généralisé aux fonctions de corrélation dynamiques.<br /> <br />Je présente aussi dans ce mémoire les généralisations de<br />cette méthode aux chaînes de spin supérieur à 1/2 et aux chaînes de spin à bords ouverts.
265

D-branes et orientifolds dans des espaces courbes ou dépendant du temps

Couchoud, Nicolas 01 October 2004 (has links) (PDF)
Dans cette thèse nous étudions la théorie des cordes en présence de<br />D-branes et éventuellement d'orientifolds dans des espaces courbes ou dépendants du temps. Notre étude vise à comprendre certains aspects des espaces courbes et dépendant du temps, notamment à cause de leur importance en cosmologie.<br /><br />Le premier chapitre introduit quelques bases de la théorie des cordes.<br /><br />Le deuxième chapitre étudie les cordes non orientées sur les groupes compacts SU(2) et SO(3) : après un rappel des résultats connus sur les D-branes dans ces espaces, nous présentons nos résultats sur la position des orientifolds et leur interaction avec les cordes ouvertes et fermées.<br /><br />Le troisième chapitre étudie les D-branes dans certains fonds de type Ramond-Ramond, en utilisant la S-dualité qui les relie à des fonds de type Neveu-Schwarz, où on sait faire les calculs.<br /><br />Le dernier chapitre considère les cordes sur une D-brane parcourue par une onde plane, et introduit les outils y permettant l'étude des interactions.
266

Du développement topologique des modèles de matrices à la théorie des cordes topologiques:<br /> combinatoire de surfaces par la géométrie algébrique.

Orantin, Nicolas 13 September 2007 (has links) (PDF)
Le modèle à deux matrices a été introduit pour étudier le modèle d'Ising sur surface aléatoire. Depuis, le lien entre les modèles de matrices et la combinatoire de surfaces discrétisées s'est beaucoup développé Cette thèse a pour propos d'approfondir ces liens et de les étendre au delà des modèles de matrices en suivant l'évolution de mes travaux de recherche. Tout d'abord, je m'attache à définir rigoureusement le modèle à deux matrices hermitiennes formel donnant accès aux fonctions génératrices de surfaces discrétisées portant une structure de spin. Je montre alors comment calculer, par des méthodes de g'eométrie algébrique, tous les termes du développement topologique des observables comme formes différentielles définies sur une courbe algébrique associée au modèle: la courbe spectrale. Dans un second temps, je montre comment, imitant la construction du modèle à deux matrices, on peut définir de telles formes différentielles sur n'importe quelle courbe algébrique possédant de nombreuses propriétés d'invariance sous les déformations de la courbe algébrique considérée. En particulier, on peut montrer que si cette courbe est la courbe spectrale d'un modèle de matrices, ces invariants reconstituent les termes des développements topologiques des observables du modèle. Finalement,<br /><br />je montre que pour un choix particulier des paramètres, ces objets peuvent être rendus invariants modulaires et sont solutions des équations d'anomalie holomorphe de la théorie de Kodaira-Spencer donnant un nouvel élément vers la preuve de la conjecture de Dijkgraaf-Vafa.
267

Approximation des Phases Aléatoires Self-Consistante dans le Modèle de Hubbard

Schäfer, Steffen 08 October 1998 (has links) (PDF)
La RPA Self-Consistante (SCRPA) est appliquée aux fonctions de corrélation particule-trou dans le Modèle de Hubbard.<br /><br />Pour une fonction de Green générale à $n$ corps cette méthode se dérive à partir de l'Equation de Dyson où seules sont retenues les contributions instantanées de l'opérateur de masse. La fonction de Green est alors donnée par un système d'équations intégrales non-linéaires que l'on cherchera à résoudre de façon self-consistante. Elle satisfait, parmi d'autres théorèmes, la règle de somme pondérée par l'énergie. Pour les fonctions de Green à une et à deux particules, la SCRPA obéit à un principe variationnel. Dans le Modèle de Hubbard les fonctions de corrélation de charge et de spin sont calculées en SCRPA. En négligeant les densités connectées à deux corps, nous obtenons une théorie self-consistante plus simple, la RPA renormalisée. Les deux méthodes sont étudiées et comparées à la RPA standard.<br /><br />Nous établissons et résolvons numériquement les équations de la RPA renormalisée pour les fonctions de corrélations de densité de charge dans le Modèle de Hubbard à une dimension. Les susceptibilités de charge et de spin longitudinal, la distribution des impulsions et plusieurs propriétés du fondamental sont évaluées et comparées aux résultats exacts. Dans la limite du couplage fort de la bande à moitié remplie, la RPA renormalisée possède une solution analytique qui est, à un facteur près, en accord avec le développement pour fortes interactions de l'ansatz de Bethe. Comme prévu, des particularités liées à la dimension spatiale $1$, par exemple un comportement de liquide de Luttinger, n'ont pas pu être retrouvées. Or, la description fournie par notre méthode pourrait être assez réaliste en dimensions plus élevées.<br /><br />Une partie de ces travaux a été publié dans<br />"Dyson Equation Approach to Many-Body Greens Functions and<br />Self-Consistent RPA, First Application to the Hubbard Model"<br />Steffen Schäfer, Peter Schuck, Phys. Rev. B 59, 1712-1733 (1999).
268

The application of RV Southwells' relaxation methods to the solution of problems in torsion of prismatic bars

Leitner, Murray Irving, 1922- January 1949 (has links)
No description available.
269

Localisation dynamique et égalité des conductances de Hall pour des opérateurs de Schrödinger magnétiques aléatoires

Amal, Taarabt 26 September 2013 (has links) (PDF)
Nous nous intéressons dans un premier temps à l'étude des propriétés spectrale de localisation dynamique pour des opérateurs de Schrödinger ainsi qu'a leurs classifications. Nous introduirons trois classes de propriétés équivalentes en cherchant à établir le lien entre elles d'une façon optimale et illustrée par des contre-exemples. Certaines de ces propriétés s'avèrent jouer un rôle crucial dans l'étude mathématique de plusieurs phénomènes issus de la physique, notamment la quantifi cation de la conductance de Hall et l'apparition des plateaux dûs aux états localisés. Nous nous intéressons ainsi dans la seconde partie, aux conductances de Hall et de bord pour des modèles désordonnés continus et en présence d'un mur électrique aussi bien que magnétique. Nous expliquons comment les murs entrent en jeu pour pouvoir définir la conductance de bord, en tenant compte de la contribution des états localisés et la régularisation que les systèmes désordonnés requièrent. Nous établissons l'égalité de ces deux conductances directement et non par quantification séparée.
270

A Geometric Study of Superintegrable Systems

Yzaguirre, Amelia L. 21 August 2012 (has links)
Superintegrable systems are classical and quantum Hamiltonian systems which enjoy much symmetry and structure that permit their solubility via analytic and even, algebraic means. The problem of classification of superintegrable systems can be approached by considering associated geometric structures. To this end, we invoke the invariant theory of Killing tensors (ITKT), and the recursive version of the Cartan method of moving frames to derive joint invariants. We are able to intrinsically characterise and interpret the arbitrary parameters appearing in the general form of the Smorodinsky-Winternitz superintegrable potential, where we determine that the more general the geometric structure associated with the SW potential is, the fewer arbitrary parameters it admits. Additionally, we classify the multi-separability of the Tremblay-Turbiner-Winternitz (TTW) system. We provide a proof that only for the case k = +/- 1 does the general TTW system admit orthogonal separation of variables with respect to both Cartesian and polar coordinates. / A study towards the classification of superintegrable systems defined on the Euclidean plane.

Page generated in 0.078 seconds