Spelling suggestions: "subject:"amathematical abilities"" "subject:"dmathematical abilities""
21 |
Praktisk matte? : En innehållsanalys av undervisningsmaterialet Praktisk matematik 1 / Practical Math? : A Qualitative Content Analysis of the Teaching Material Praktisk matematik 1Gembert, Linnéa, Sipinen, Linnéa January 2020 (has links)
Syftet med denna studie är att undersöka om materialet Praktisk matematik 1 passar att använda i matematikundervisningen i årskurs 1–3 utifrån arbetssättet konkret till abstrakt med fokus på kopplingen till de matematiska förmågorna och det centrala innehållet i matematik från Skolverkets (2019) läroplan. I studien undersöks vilka fem matematiska förmågor som elever ges möjlighet att öva, genom vilket centralt innehåll elever ges möjlighet att öva dessa fem matematiska förmågor samt hur materialet är utformat för arbete genom arbetssättet konkret till abstrakt. Denna studie innehåller en kvalitativ innehållsanalys av materialet Praktisk matematik 1. För att analysera materialet skapades kriterier utifrån de matematiska förmågorna och det centrala innehållet från den svenska läroplanen (Skolverket, 2019). Materialets utformning för arbetssättet konkret till abstrakt analyserades utifrån studiens teori. Resultatet visar att elever ges möjlighet att öva samtliga matematiska förmågor i olika utsträckning genom arbete med materialet Praktisk matematik 1. Genom områdena taluppfattning och tals användning, geometri och problemlösning ges elever möjlighet att öva samtliga fem matematiska förmågor. Genom områdena algebra och sannolikhet och statistik ges elever möjlighet att öva begrepps-, räkne- och problemlösningsförmågan och genom området samband och förändring ges elever möjlighet att öva begrepps-, räkne-, problemlösnings- och resonemangsförmågan. Dessa förmågor ges möjlighet att öva i olika utsträckning genom de olika punkterna som områdena innehåller. Materialet är utformat för att arbeta utifrån arbetssättet konkret till abstrakt genom att samtliga kort uppmanar elever till arbete med konkret material. Vid ungefär hälften av korten följs arbetet med det konkreta materialet av abstrakta beräkningar. / The purpose of this study is to investigate whether the material Praktisk matematik 1 is suitable for use in mathematics teaching in years 1–3 based on the working method concrete to abstract with a focus on the connection to the mathematical abilities and the central content in mathematics from Skolverkets (2019) curriculum. This study analyses which five mathematical abilities students are given an opportunity to practice, through which central content students are given the opportunity to practice these five mathematical abilities and in what way the material is designed for working from concrete to abstract. This study contains a qualitative content analysis of the material Praktisk matematik 1. To analyse the material, criteria were created based of the mathematical abilities and the central content from the Swedish curriculum (Skolverket 2019). The material’s design for working from concrete to abstract was analysed from this study’s theory. The results show that students are given the opportunity to practice all five mathematical abilities to a verifying degree through working with the material Praktisk matematik 1. Through the areas number perception and number’s use, geometry and problem-solving students are given the opportunity to practice all five mathematical abilities. Through the areas algebra and probability and statistics are students given the opportunity to practice the ability to comprehend mathematical terms, numeracy, and the ability to solve problems. Through the area connections and change student are given the opportunity to practice their ability to comprehend mathematical terms, numeracy, the ability to solve problems and reasoning ability. These abilities are given a varied opportunity to practice through the different points the areas include. The material is designed to work from concrete to abstract because every card calls on using concrete material. The usage of concrete material is in about half of the cards followed by an abstract calculation.
|
22 |
Analýza problematických míst při zvládání matematiky u žáků s poruchou autistického spektra (a jejich vztah ke kognitivnímu zpracovávání žáků) / Analysis of Solving Math Problems in Students with Autism Spectrum Disorder (and its relation to cognitive processing of students)Sotáková, Hana January 2019 (has links)
The dissertation thesis addresses the topic of mathematical tasks processing in students with autism spectrum disorder (ASD) and problematic points of their solution. The aim of this work is to delineate methods that ASD students use to approach these tasks and solve them. We focus primarily on whether it is possible to identify different procedures than those used by typically developing students, and whether these procedures show specifics corresponding to distinct cognitive processes. In the theoretical part we provide a theoretical background for the study. Firstly, we create a frame to understand the complexity of autism, furthermore we deal with psychological theories examining the topic, and describe specifics of development of ASD students during their adolescence. Thereafter, we reflect on studies addressing mathematical skills of ASD students. Mathematics is considered as their great strength, however is not sufficiently scrutinized, as highlighted by various international studies (for example Oswald et al., 2016). The empiric part is based on qualitative methodology and pursues comparisons of mathematical tasks processing between six ASD students and typically developing peers. We strive to document differences and common points in solutions as well as to analyze cognitive processes of...
|
23 |
Count on the brain / using EEG oscillations and eye movements to disentangle intelligent problem-solving in mathDix, Annika 11 January 2016 (has links)
Wir können Mathematikleistungen über fluide Intelligenz (FI) vorhersagen. Der Einfluss von FI auf kognitive Prozesse und neuronale Mechanismen, die mathematischen Fähigkeiten in verschiedenen Teildisziplinen zugrunde liegen, ist jedoch wenig verstanden. Vorliegende Arbeit spezifiziert FI-bezogene Unterschiede in diesen Prozessen und Mechanismen beim Lösen von Geometrie-, Arithmetik- und Algebra-Aufgaben. Mithilfe eines multimethodalen Ansatzes beleuchtet sie das Zusammenspiel zwischen FI, Leistung und Faktoren wie Aufgabenkomplexität, Lernen und Strategiewahl, die kognitive Prozesse und Anforderungen beim Problemlösen beeinflussen. Leistungsunterschiede wurden durch Messung von Reaktionszeiten und Fehlerraten, Strategien durch Augenbewegungsanalyse erfasst. Als Indikator kortikaler Aktivität diente die ereigniskorrelierte (De-)Synchronisation (ERD/ERS) im Alpha-Band. Um kognitive Prozesse zu unterscheiden, haben wir die ERD/ERS im Theta-Band und den Alpha-Unterbändern einbezogen. Beim Lösen unvertrauter geometrischer Analogien zeichnete sich hohe FI durch verstärkte Verarbeitung visuell-räumlicher Informationen zum Repräsentieren von Merkmalszusammenhängen aus. Schüler mit hoher FI passten ihre Strategiewahl den Anforderungen flexibler an. Erstmals konnten wir durch trialweise Identifikation von Strategien FI-bezogene Unterschiede in der neuronalen Effizienz der Strategieausführung feststellen. Beim Lösen vertrauter arithmetischer und algebraischer Terme zeigten sich bei Schülern mit hoher im Vergleich zu Schülern mit durchschnittlicher FI geringere Anforderungen zur Aktualisierung numerischer Repräsentationen und eine bessere Leistung in komplexen Aufgaben. Weitere Analysen legen nahe, dass Schüler mit hoher FI Zusammenhänge in der Aufgabenstruktur besser erkennen und passende Routinen abrufen können. Die Fähigkeit Zusammenhangsrepräsentationen zu bilden könnte demnach ein Schlüsselaspekt zur Erklärung FI-abhängiger Unterschiede in mathematischen Fähigkeiten sein. / Fluid intelligence (FI) is a strong predictor of mathematical performance. However, the impact of FI on cognitive processes and neural mechanisms underlying differences in mathematical abilities across different subdivisions is not well understood. The present work specifies FI-related differences in these processes and mechanisms for students solving geometric, arithmetic, and algebraic problems. We chose a multi-methodological approach to shed light on the interplay between FI, performance, and factors such as task complexity, learning, and strategy selection that influence cognitive processes and task demands in problem-solving. We measured response times and error rates to evaluate performance, eye movements to identify solution strategies, and the event-related (de-)synchronization (ERD/ERS) in the broad alpha band as indicator of general cortical activity. Further, we considered the ERD/ERS in the theta band and the alpha sub-bands to distinguish between associated cognitive processes. For unfamiliar geometric analogy tasks, students with high FI built relational representations based on a more intense processing of spatial information. Strategy analyses revealed a more adaptive strategy choice in response to increasing task demands compared to students with average FI. Further, we conducted the first study identifying strategies and related cortical activity trial-wise and thereby identified FI-related differences in the neural efficiency of strategy execution. For solving familiar arithmetic and algebraic problems, high compared to average FI was associated with lower demands on the updating of numbers leading to a better performance in complex tasks. Further analyses suggest that students with high FI had an advantage to identify the relational structure of the problems and to retrieve routines that match this structure. Thus, the ability to build relational representations might be one key aspect explaining FI-related difference in mathematical abilities.
|
24 |
Lien entre l'activité pariéto-occipitale enregistrée pendant une tâche de mémoire à court terme visuelle et les habiletés mathématiques : une étude en magnétoencéphalographieBoulet-Craig, Aubrée 08 1900 (has links)
La mémoire à court terme visuelle (MCTv) est un système qui permet le maintien temporaire de l’information visuelle en mémoire. La capacité en mémoire à court terme se définit par le nombre d’items qu’un individu peut maintenir en mémoire sur une courte période de temps et est limitée à environ quatre items. Il a été démontré que la capacité en MCTv et les habiletés mathématiques sont étroitement liées. La MCTv est utile dans beaucoup de composantes liées aux mathématiques, comme la résolution de problèmes, la visualisation mentale et l’arithmétique. En outre, la MCTv et le raisonnement mathématique font appel à des régions similaires du cerveau, notamment dans le cortex pariétal. Le sillon intrapariétal (SIP) semble être particulièrement important, autant dans la réalisation de tâches liées à la MCTv qu’aux habiletés mathématiques. Nous avons créé une tâche de MCTv que 15 participants adultes en santé ont réalisée pendant que nous enregistrions leur activité cérébrale à l’aide de la magnétoencéphalographie (MEG). Nous nous sommes intéressés principalement à la composante SPCM. Une évaluation neuropsychologique a également été administrée aux participants. Nous souhaitions tester l’hypothèse selon laquelle l’activité cérébrale aux capteurs pariéto-occipitaux pendant la tâche de MCTv en MEG sera liée à la performance en mathématiques. Les résultats indiquent que l’amplitude de l’activité pariéto-occipitale pendant la tâche de MCTv permet de prédire les habiletés mathématiques ainsi que la performance dans une tâche de raisonnement perceptif. Ces résultats permettent de confirmer le lien existant entre les habiletés mathématiques et le fonctionnement sous-jacent à la MCTv. / Visual short-term memory (VSTM) is a memory system that permits the temporary retention of visual information. Short-term memory capacity can be defined by the amount of information that an individual can remember over a short period of time and is limited to about four items. It was shown that VSTM capacity and mathematical abilities are closely related. VSTM is useful for a lot of components linked to mathematical skills like word problem solving, mental visualisation and arithmetic. Moreover, VSTM and mathematical reasoning activate similar brain regions, mainly within the parietal cortex. The intraparietal sulcus (IPS) appears to be particularly important both in the realization of VSTM tasks and mathematical reasoning tasks. We created a VSTM task which 15 healthy adult participants completed while we recorded their brain activity using magnetoencephalography (MEG). We were mainly interested in the SPCM component. A neuropsychological assessment was also administrated to the participants. We wanted to verify the hypothesis stipulating that cerebral activity recorded at parieto-occipital sensors during the VSTM task should be linked to performance in mathematics. The results indicate that parieto-occipital activity during the VSTM tasks predicted mathematical abilities as well as performance on a perceptive reasoning task. These results confirmed the link existing between mathematical abilities and VSTM functioning.
|
Page generated in 0.0782 seconds