• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 11
  • 11
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Duality of Gaudin Models

Filipp Uvarov (9121400) 29 July 2020 (has links)
<div>We consider actions of the current Lie algebras $\gl_{n}[t]$ and $\gl_{k}[t]$ on the space $\mathfrak{P}_{kn}$ of polynomials in $kn$ anticommuting variables. The actions depend on parameters $\bar{z}=(z_{1}\lc z_{k})$ and $\bar{\alpha}=(\alpha_{1}\lc\alpha_{n})$, respectively.</div><div>We show that the images of the Bethe algebras $\mathcal{B}_{\bar{\alpha}}^{\langle n \rangle}\subset U(\gl_{n}[t])$ and $\mathcal{B}_{\bar{z}}^{\langle k \rangle}\subset U(\gl_{k}[t])$ under these actions coincide.</div><div></div><div>To prove the statement, we use the Bethe ansatz description of eigenvectors of the Bethe algebras via spaces of quasi-exponentials. We establish an explicit correspondence between the spaces of quasi-exponentials describing eigenvectors of $\mathcal{B}_{\bar{\alpha}}^{\langle n \rangle}$ and the spaces of quasi-exponentials describing eigenvectors of $\mathcal{B}_{\bar{z}}^{\langle k \rangle}$.</div><div></div><div>One particular aspect of the duality of the Bethe algebras is that the Gaudin Hamiltonians exchange with the Dynamical Hamiltonians. We study a similar relation between the trigonometric Gaudin and Dynamical Hamiltonians. In trigonometric Gaudin model, spaces of quasi-exponentials are replaced by spaces of quasi-polynomials. We establish an explicit correspondence between the spaces of quasi-polynomials describing eigenvectors of the trigonometric Gaudin Hamiltonians and the spaces of quasi-exponentials describing eigenvectors of the trigonometric Dynamical Hamiltonians.</div><div></div><div>We also establish the $(\gl_{k},\gl_{n})$-duality for the rational, trigonometric and difference versions of Knizhnik-Zamolodchikov and Dynamical equations.</div>
2

Quantum Error Correction in Quantum Field Theory and Gravity

Keiichiro Furuya (16534464) 18 July 2023 (has links)
<p>Holographic duality as a rigorous approach to quantum gravity claims that a quantum gravitational system is exactly equal to a quantum theory without gravity in lower spacetime dimensions living on the boundary of the quantum gravitational system. The duality maps key questions about the emergence of spacetime to questions on the non-gravitational boundary system that are accessible to us theoretically and experimentally. Recently, various aspects of quantum information theory on the boundary theory have been found to be dual to the geometric aspects of the bulk theory. In this thesis, we study the exact and approximate quantum error corrections (QEC) in a general quantum system (von Neumann algebras) focused on QFT and gravity. Moreover, we study entanglement theory in the presence of conserved charges in QFT and the multiparameter multistate generalization of quantum relative entropy.</p>
3

Some Connections Between Complex Dynamics and Statistical Mechanics

Ivan Chio (8422929) 15 June 2020 (has links)
Associated to any finite simple graph Γ is the <i>chromatic polynomial </i>PΓ(q) whose complex zeros are called the <i>chromatic zeros </i>of Γ. A hierarchical lattice is a sequence of finite simple graphs {Γ<sub>n</sub>}∞<sub><i>n</i>-0</sub> built recursively using a substitution rule expressed in terms of a generating graph. For each <i>n</i>, let <i>μn</i> denote the probability measure that assigns a Dirac measure to each chromatic zero of Γ<sub><i>n</i></sub>. Under a mild hypothesis on the generating graph, we prove that the sequence <i>μn</i> converges to some measure <i>μ</i> as <i>n</i> tends to infinity. We call <i>μ</i> the limiting measure of <i>chromatic zeros</i> associated to {Γ<sub>n</sub>}∞<sub><i>n-</i>0</sub>. In the case of the Diamond Hierarchical Lattice we prove that the support of <i>μ</i> has Hausdorff dimension two.<div><br></div><div>The main techniques used come from holomorphic dynamics and more specifically the theories of activity/bifurcation currents and arithmetic dynamics. We prove anew equidistribution theorem that can be used to relate the chromatic zeros of ahierarchical lattice to the activity current of a particular marked point. We expect that this equidistribution theorem will have several other applications, and describe one such example in statistical mechanics about the Lee-Yang-Fisher zeros for the Cayley Tree.<br></div>
4

BOUNDARY AND DOMAIN WALL THEORIES OF 2D GENERALIZED QUANTUM DOUBLE MODELS

Sheng Tan (11386899) 17 April 2023 (has links)
<p>This dissertation consists of two parts. In the first part, we discuss the boundary and domain wall theories of the generalized quantum double lattice realization of the two-dimensional topological orders based on Hopf algebras. The boundary Hamiltonian and domain wall Hamiltonian are constructed by using Hopf algebra pairings and generalized quantum double. The algebraic data behind the gapped boundary and domain wall are comodule algebras and bicomodule algebras, respectively. The topological excitations in the boundary and domain wall are classified by bimodules over these algebras. Finally, via the Hopf tensor network representation of the quantum many-body states, we solve the ground state of the model in the presence of the boundary and domain wall.</p> <p><br></p> <p>In the second part, we introduce the weak Hopf algebra extension of symmetry, which arises naturally in anyonic quantum systems, and we establish weak Hopf symmetry breaking theory based on the fusion closed set of anyons. We present a thorough investigation of the quantum double model based on weak Hopf algebras, including the topological excitations and ribbon operators, and show that the vacuum sector of the model has weak Hopf symmetry. The gapped boundary and domain wall theories are also established. We show that the gapped boundary is algebraically determined by a comodule algebra, or equivalently, a module algebra, and the gapped domain wall is determined by the bicomodule algebra, or equivalently, a bimodule algebra. We also introduce the weak Hopf tensor network states, by which we solve the weak Hopf quantum double models on closed and open surfaces. Lastly, we discuss the duality of the quantum double phases.</p>
5

Classical and Quantum Optimization for Scientific Computation

Shree Hari Sureshbabu (16640823) 25 July 2023 (has links)
<p>Optimization and Machine learning (ML) have emerged as two positively disruptive methodologies and have thus resulted in unprecedented applications in several domains of technology. In recent years, ML has forayed into physical sciences and provided promising outcomes thanks to its ability in representing and generalizing complex functions to reveal underlying relations among variables describing a system. By casting ML as an optimization task, we first focus on its application in solving quantum many-body problems. Leveraging the power of quantum computation, we develop hybrid quantum machine learning protocols and implement benchmark tests to calculate the band structures of two-dimensional materials. We also show how this method can be used to estimate the critical point for a quantum phase transition. One  hurdle in such techniques is related to parameter optimization, wherein to obtain the desired result, the parameters have to be optimized, which can be computationally intensive. For a particular class of problem and a choice of algorithm, we deduce a simple parameter setting rule. This rule is projected as a heuristic and is validated numerically for several problem instances. Finally, by venturing into thermal photonics, a framework that takes advantage of the spectral and spatial information of hyperspectral thermal images to establish a completely passive machine perception, titled HADAR is presented. A conventional deep neural network is developed that utilizes the governing equation of HADAR and its performance in semantic segmentation is demonstrated. Altogether, this report establishes the need for creative algorithms that exploit modern hardware to solve complex problems that were previously deemed unsolvable.</p>
6

Spacetime Symmetries from Quantum Ergodicity

Shoy Ouseph (18086125) 16 April 2024 (has links)
<p dir="ltr">In holographic quantum field theories, a bulk geometric semiclassical spacetime emerges from strongly coupled interacting conformal field theories in one less spatial dimension. This is the celebrated AdS/CFT correspondence. The entanglement entropy of a boundary spatial subregion can be calculated as the area of a codimension two bulk surface homologous to the boundary subregion known as the RT surface. The bulk region contained within the RT surface is known as the entanglement wedge and bulk reconstruction tells us that any operator in the entanglement wedge can be reconstructed as a non-local operator on the corresponding boundary subregion. This notion that entanglement creates geometry is dubbed "ER=EPR'' and has been the driving force behind recent progress in quantum gravity research. In this thesis, we put together two results that use Tomita-Takesaki modular theory and quantum ergodic theory to make progress on contemporary problems in quantum gravity.</p><p dir="ltr">A version of the black hole information loss paradox is the inconsistency between the decay of two-point functions of probe operators in large AdS black holes and the dual boundary CFT calculation where it is an almost periodic function of time. We show that any von Neumann algebra in a faithful normal state that is quantum strong mixing (two-point functions decay) with respect to its modular flow is a type III<sub>1</sub> factor and the state has a trivial centralizer. In particular, for Generalized Free Fields (GFF) in a thermofield double (KMS) state, we show that if the two-point functions are strong mixing, then the entire algebra is strong mixing and a type III<sub>1</sub> factor settling a recent conjecture of Liu and Leutheusser.</p><p dir="ltr">The semiclassical bulk geometry that emerges in the holographic description is a pseudo-Riemannian manifold and we expect a local approximate Poincaré algebra. Near a bifurcate Killing horizon, such a local two-dimensional Poincaré algebra is generated by the Killing flow and the outward null translations along the horizon. We show the emergence of such a Poincaré algebra in any quantum system with modular future and past subalgebras in a limit analogous to the near-horizon limit. These are known as quantum K-systems and they saturate the modular chaos bound. We also prove that the existence of (modular) future/past von Neumann subalgebras also implies a second law of (modular) thermodynamics.</p>
7

Exploring solution strategies that can enhance the achievement of low-performing grade 12 learners in some mathematical aspects

Machisi, Eric 06 1900 (has links)
The purpose of this study was to explore solution strategies that can enhance the achievement of low-performing Grade 12 learners in the following mathematical aspects: finding the general term of a quadratic sequence, factorising third degree polynomials, determining the centre and radius of a circle, and calculating the angle between two lines. A convenience sample of twenty-five low-performing Grade 12 learners from a secondary school in Capricorn District of Limpopo Province participated in the study which adopted a repeated-measures research design. Learners were exposed to multiple solution strategies and data were collected using achievement tests. Findings indicated significant differences in learners‟ average scores due to the solution strategies used. In determining the general term of a quadratic sequence, learners‟ scores were significantly higher when they used formula and the table method than with the method of residues and solving simultaneous equations. Synthetic division made learners to achieve better scores than long division and equating coefficients in factorising third degree polynomials. The use of formulae to find the centre and radius of a circle made learners to have better achievement scores than completing the square. In calculating the angle between two lines learners‟ scores were better using formula and the cosine rule than using theorems. It was concluded that exposing low-performing Grade 12 learners to multiple solution strategies would enhance their achievement in the mathematical aspects explored in the study. Some of the solution strategies that made learners to achieve better results were not in the prescribed mathematics textbooks. The study therefore recommends that mathematics teaching should not be textbook-driven and that low-performing Grade 12 learners should not be regarded as beyond redemption. / Mathematics Education / M.Sc. (Mathematics, Science and Technology Education)
8

Exploring solution strategies that can enhance the achievement of low-performing grade 12 learners in some mathematical aspects

Machisi, Eric 06 1900 (has links)
The purpose of this study was to explore solution strategies that can enhance the achievement of low-performing Grade 12 learners in the following mathematical aspects: finding the general term of a quadratic sequence, factorising third degree polynomials, determining the centre and radius of a circle, and calculating the angle between two lines. A convenience sample of twenty-five low-performing Grade 12 learners from a secondary school in Capricorn District of Limpopo Province participated in the study which adopted a repeated-measures research design. Learners were exposed to multiple solution strategies and data were collected using achievement tests. Findings indicated significant differences in learners‟ average scores due to the solution strategies used. In determining the general term of a quadratic sequence, learners‟ scores were significantly higher when they used formula and the table method than with the method of residues and solving simultaneous equations. Synthetic division made learners to achieve better scores than long division and equating coefficients in factorising third degree polynomials. The use of formulae to find the centre and radius of a circle made learners to have better achievement scores than completing the square. In calculating the angle between two lines learners‟ scores were better using formula and the cosine rule than using theorems. It was concluded that exposing low-performing Grade 12 learners to multiple solution strategies would enhance their achievement in the mathematical aspects explored in the study. Some of the solution strategies that made learners to achieve better results were not in the prescribed mathematics textbooks. The study therefore recommends that mathematics teaching should not be textbook-driven and that low-performing Grade 12 learners should not be regarded as beyond redemption. / Mathematics Education / M.Sc. (Mathematics, Science and Technology Education)
9

Facets of Computation Platforms: From Conceptual Frameworks to Practical Instantiations

Rishabh Khare (13124754) 20 July 2022 (has links)
<p>    </p> <p>We live in an age in which computation touches upon every aspect of our lives in ever increasing ways. To meet the demand for increased computing power and ability, new computation strategies are continually being proposed. In this dissertation, we consider two research projects related to two such cutting edge paradigms. We first consider developing superconducting devices that implement asynchronous reversible ballistic computation. This paradigm was developed to circumvent Landauer’s principle of a minimum energy required per bitwise computation operation. We report the design of a new device, the rotary, which is a critical step towards developing universal computation gates in the scheme of synchronous reversible ballistic computation. Next, we turn to the consideration of anyons which have been predicted to enable topological quantum computing, a quantum computing paradigm that is relatively immune to environmental noise. We consider initial steps in the development of a Bethe ansatz solvable model that will help decipher the many-body properties of Majorana zero modes in superconducting Kitaev wires. </p>
10

Entanglement Entropy in Cosmology and Emergent Gravity

Akhil Jaisingh Sheoran (15348844) 25 April 2023 (has links)
<p>Entanglement entropy (EE) is a quantum information theoretic measure that quantifies the correlations between a region and its surroundings. We study this quantity in the following two setups : </p> <ul> <li>We look at the dynamics of a free minimally coupled, massless scalar field in a deSitter expansion, where the expansion stops after some time (i.e. we quench the expansion) and transitions to flat spacetime. We study the evolution of entanglement entropy (EE) and the Rényi entropy of a spatial region during the expansion and, more interestingly, after the expansion stops, calculating its time evolution numerically. The EE increases during the expansion but the growth is much more rapid after the expansion ends, finally saturating at late times, with saturation values obeying a volume law. The final state of the subregion is a partially thermalized state, reminiscent of a Gibbs ensemble. We comment on application of our results to the question of when and how cosmological perturbations decohere.</li> <li>We study the EE in a theory that is holographically dual to a BTZ black hole geometry in the presence of a scalar field, using the Ryu-Takayangi (RT) formula. Gaberdiel and Gopakumar had conjectured that the theory of N free fermions in 1+1 dimensions, for large N, is dual to a higher spin gravity theory with two scalar fields in 2+1 dimensions. So, we choose our boundary theory to be the theory of N free Dirac fermions with a uniformly winding mass, m e<sup>iqx</sup>, in two spacetime dimensions (which describes for instance a superconducting current in an N-channel wire). However, to O(m<sup>2</sup>), thermodynamic quantities can be computed using Einstein gravity. We aim to check if the same holds true for entanglement entropy (EE). Doing calculations on both sides of the duality, we find that general relativity does indeed correctly account for EE of single intervals to O(m<sup>2</sup>).</li> </ul>

Page generated in 0.0597 seconds