Spelling suggestions: "subject:"béatrice dde décomposition"" "subject:"béatrice dee décomposition""
1 |
Inclusion d'algèbres de Hecke et nombres de décompositionRassemusse Genet, Gwenaelle 16 June 2004 (has links) (PDF)
Cette thèse comporte trois parties. Dans la première, nous nous intéressons à la formule du commutateur d'un groupe admettant une BN-paire scindée. Nous montrons que sous une condition dite "condition de Lévi faible", le groupe vérifie cette formule. Dans la seconde partie, nous étudions la conservation de la forme unitriangulaire lors du passage d'une matrice de décomposition d'un module sur une algèbre graduée à la matrice de décomposition de la restriction de ce module sur l'algèbre effectuant la graduation et vice-versa. Nous verrons des applications pour des algèbres cellulaires pourvues également d'autres propriétés, notamment des algèbres de Ariki-Koike. Nous terminons par une partie traitant de la conjecture de J. Gruber et G. Hiss pour les nombres de décomposition des algèbres de Hecke de type B et D. Nous généralisons et prouvons cette conjecture dans le cas des algèbres de groupes de réflexions complexes. Puis nous observons quels sont les problèmes de la généralisation des méthodes utilisées lors du passage des algèbres de groupes aux algèbres de Hecke (de type B et D). Enfin, nous donnons une condition naturelle sur des filtrations de modules de Specht, sous-laquelle la conjecture est satisfaite.
|
2 |
Représentations modulaires des algèbres de Hecke et des algèbres de Ariki-KoikeJACON, Nicolas 11 June 2004 (has links) (PDF)
Soit $W$ un groupe de Weyl fini et soit $H$ l'algèbre de Hecke correspondante, définie sur l'anneau $A:=Z[v,v^(-1)]$ où $v$ est une indéterminée. Soit $K$ le corps des fractions de $A$ et soit $\theta$ une spécialisation dans un corps $L$ de ``bonne'' caractéristique. Dans une série d'articles récents, M.Geck et R.Rouquier ont présenté une méthode pour déterminer l'ensemble des $H_L$-modules simples $\Irr(H_L)$. Celle-ci consiste à construire un ``ensemble basique canonique'' $B$ contenu dans $\Irr(H_K)$ défini grace à la $a$-fonction de Lusztig et en bijection avec $\Irr(H_L)$. Le but de ce travail est de déterminer explicitement $B$ pour tout groupe de Weyl et pour toute spécialisation puis d'étendre la méthode ci-dessus aux algèbres de Ariki-Koike. Comme conséquences, nous obtenons un algorithme pour le calcul des matrices de décompositions des algèbres de Ariki-Koike et une caractérisation des modules simples pour certaines algèbres cyclotomiques de type $G(l,l,n)$.
|
3 |
Matrices de décomposition des algèbres d'Ariki-Koike et isomorphismes de cristaux dans les espaces de FockGerber, Thomas 01 July 2014 (has links) (PDF)
Cette thèse est consacrée à l'étude des représentations modulaires des algèbres d'Ariki-Koike, et des liens avec la théorie des cristaux et des bases canoniques de Kashiwara via le théorème de catégorification d'Ariki. Dans un premier temps, on étudie, grâce à des outils combinatoires, les matrices de décomposition de ces algèbres en généralisant les travaux de Geck et Jacon. On classifie entièrement les cas d'existence et de non-existence d'ensembles basiques, en construisant explicitement ces ensembles lorsqu'ils existent. On explicite ensuite les isomorphismes de cristaux pour les représentations de Fock de l'algèbre affine quantique de type A affine. On construit alors un isomorphisme particulier, dit canonique, qui permet entre autres une caractérisation non-récursive de n'importe quelle composante connexe du cristal. On souligne également les liens avec la combinatoire des mots sous-jacente à la structure cristalline des espaces de Fock, en décrivant notamment un analogue de la correspondance de Robinson-Schensted-Knuth pour le type A affine.
|
4 |
Matrices de décomposition des algèbres d'Ariki-Koike et isomorphismes de cristaux dans les espaces de Fock / Decomposition matrices for Ariki-Koike algebras and crystal isomorphisms in Fock spacesGerber, Thomas 01 July 2014 (has links)
Cette thèse est consacrée à l’étude des représentations modulaires des algèbres d’Ariki-Koike, et des liens avec la théorie des cristaux et des bases canoniques de Kashiwara via le théorème de catégorification d’Ariki. Dans un premier temps, on étudie, grâce à des outils combinatoires, les matrices de décomposition de ces algèbres en généralisant les travaux de Geck et Jacon. On classifie entièrement les cas d’existence et de non-existence d’ensembles basiques, en construisant explicitement ces ensembles lorsqu’ils existent. On explicite ensuite les isomorphismes de cristaux pour les représentations de Fock de l’algèbre affine quantique Uq(sle). On construit alors un isomorphisme particulier, dit canonique, qui permet entre autres une caractérisation non-récursive de n’importe quelle composante connexe du cristal. On souligne également les liens avec la combinatoire des mots sous-jacente à la structure cristalline des espaces de Fock, en décrivant notamment un analogue de la correspondance de Robinson-Schensted-Knuth pour le type A affine. / This thesis is devoted to the study of modular representations of Ariki-Koike algebras, and of the connections with Kashiwara’s crystal and canonical bases theory via Ariki’s categorification theorem. First, we study, using combinatorial tools, the decomposition matrices associated to these algebras, generalising the works of Geck and Jacon. We fully classify the cases of existence and non-existence of canonical basic sets, and we explicitely construct these sets when they exist. Next, we make explicit the crystal isomorphisms for Fock spaces representations of the quantum affine algebra Uq(sle). We then construct of a particular isomorphism, so-called canonical, which gives, inter alia, a non-recursive description of any connected component of the crystal. We also stress the links with the combinatorics of words underlying the crystal structure of Fock spaces, by describing notably an analogue of the Robinson-Schensted-Knuth correspondence for affine type A.
|
Page generated in 0.0847 seconds