Spelling suggestions: "subject:"maximal monotone operator"" "subject:"laximal monotone operator""
1 |
A parabolic stochastic differential inclusionBauwe, Anne, Grecksch, Wilfried 06 October 2005 (has links) (PDF)
Stochastic differential inclusions can be considered as a generalisation of stochastic
differential equations. In particular a multivalued mapping describes the set
of equations, in which a solution has to be found.
This paper presents an existence result for a special parabolic stochastic inclusion.
The proof is based on the method of upper and lower solutions. In the deterministic
case this method was effectively introduced by S. Carl.
|
2 |
Utilisation de l'élargissement d'opérateurs maximaux monotones pour la résolution d'inclusions variationnelles / Using the expansion of maximal monotone operators for solving variational inclusionsNagesseur, Ludovic 30 October 2012 (has links)
Cette thèse est consacrée à la résolution d'un problème fondamental de l'analyse variationnelle qu'est la recherchede zéros d'opérateurs maximaux monotones dans un espace de Hilbert. Nous nous sommes tout d'abord intéressés au cas de l'opérateur somme étendue de deux opérateurs maximaux monotones; la recherche d'un zéro de cet opérateur est un problème dont la bibliographie est peu fournie: nous proposons une version modifiée de l'algorithme d'éclatement forward-backward utilisant à chaque itération, l'epsilon-élargissement d'un opérateur maximal monotone,afin de construire une solution. Nous avons ensuite étudié la convergence d'un nouvel algorithme de faisceaux pour construire ID zéro d'un opérateur maximal monotone quelconque en dimension finie. Cet algorithme fait intervenir une double approximation polyédrale de l'epsilon-élargissement de l'opérateur considéré / This thesis is devoted to solving a basic problem of variational analysis which is the search of zeros of maximal monotone operators in a Hilbert space. First of aIl, we concentrate on the case of the extended som of two maximal monotone operators; the search of a zero of this operator is a problem for which the bibliography is not abondant: we purpose a modified version of the forward-backward splitting algorithm using at each iteration, the epsilon-enlargement of a maximal monotone operator, in order to construet a solution. Secondly, we study the convergence of a new bondie algorithm to construet a zero of an arbitrary maximal monotone operator in a finite dimensional space. In this algorithm, intervenes a double polyhedral approximation of the epsilon-enlargement of the considered operator
|
3 |
Finite dimensional stochastic differential inclusionsBauwe, Anne, Grecksch, Wilfried 16 May 2008 (has links) (PDF)
This paper offers an existence result for finite dimensional stochastic differential
inclusions with maximal monotone drift and diffusion terms. Kravets studied only
set-valued drifts in [5], whereas Motyl [4] additionally observed set-valued diffusions
in an infinite dimensional context.
In the proof we make use of the Yosida approximation of maximal monotone operators
to achieve stochastic differential equations which are solvable by a theorem
of Krylov and Rozovskij [7]. The selection property is verified with certain properties
of the considered set-valued maps. Concerning Lipschitz continuous set-valued
diffusion terms, uniqueness holds. At last two examples for application are given.
|
4 |
Finite dimensional stochastic differential inclusionsBauwe, Anne, Grecksch, Wilfried 16 May 2008 (has links)
This paper offers an existence result for finite dimensional stochastic differential
inclusions with maximal monotone drift and diffusion terms. Kravets studied only
set-valued drifts in [5], whereas Motyl [4] additionally observed set-valued diffusions
in an infinite dimensional context.
In the proof we make use of the Yosida approximation of maximal monotone operators
to achieve stochastic differential equations which are solvable by a theorem
of Krylov and Rozovskij [7]. The selection property is verified with certain properties
of the considered set-valued maps. Concerning Lipschitz continuous set-valued
diffusion terms, uniqueness holds. At last two examples for application are given.
|
5 |
A parabolic stochastic differential inclusionBauwe, Anne, Grecksch, Wilfried 06 October 2005 (has links)
Stochastic differential inclusions can be considered as a generalisation of stochastic
differential equations. In particular a multivalued mapping describes the set
of equations, in which a solution has to be found.
This paper presents an existence result for a special parabolic stochastic inclusion.
The proof is based on the method of upper and lower solutions. In the deterministic
case this method was effectively introduced by S. Carl.
|
Page generated in 0.0688 seconds