Spelling suggestions: "subject:"setvalued mapping"" "subject:"posetvalued mapping""
1 |
The Clarke Derivative and Set-Valued Mappings in the Numerical Optimization of Non-Smooth, Noisy FunctionsKrahnke, Andreas 04 May 2001 (has links)
In this work we present a new tool for the convergence analysis of numerical optimization methods. It is based on the concepts of the Clarke derivative and set-valued mappings. Our goal is to apply this tool to minimization problems with non-smooth and noisy objective functions.
After deriving a necessary condition for minimizers of such functions, we examine two unconstrained optimization routines. First, we prove new convergence theorems for Implicit Filtering and General Pattern Search. Then we show how these results can be used in practice, by executing some numerical computations. / Master of Science
|
2 |
A parabolic stochastic differential inclusionBauwe, Anne, Grecksch, Wilfried 06 October 2005 (has links) (PDF)
Stochastic differential inclusions can be considered as a generalisation of stochastic
differential equations. In particular a multivalued mapping describes the set
of equations, in which a solution has to be found.
This paper presents an existence result for a special parabolic stochastic inclusion.
The proof is based on the method of upper and lower solutions. In the deterministic
case this method was effectively introduced by S. Carl.
|
3 |
Finite dimensional stochastic differential inclusionsBauwe, Anne, Grecksch, Wilfried 16 May 2008 (has links) (PDF)
This paper offers an existence result for finite dimensional stochastic differential
inclusions with maximal monotone drift and diffusion terms. Kravets studied only
set-valued drifts in [5], whereas Motyl [4] additionally observed set-valued diffusions
in an infinite dimensional context.
In the proof we make use of the Yosida approximation of maximal monotone operators
to achieve stochastic differential equations which are solvable by a theorem
of Krylov and Rozovskij [7]. The selection property is verified with certain properties
of the considered set-valued maps. Concerning Lipschitz continuous set-valued
diffusion terms, uniqueness holds. At last two examples for application are given.
|
4 |
Finite dimensional stochastic differential inclusionsBauwe, Anne, Grecksch, Wilfried 16 May 2008 (has links)
This paper offers an existence result for finite dimensional stochastic differential
inclusions with maximal monotone drift and diffusion terms. Kravets studied only
set-valued drifts in [5], whereas Motyl [4] additionally observed set-valued diffusions
in an infinite dimensional context.
In the proof we make use of the Yosida approximation of maximal monotone operators
to achieve stochastic differential equations which are solvable by a theorem
of Krylov and Rozovskij [7]. The selection property is verified with certain properties
of the considered set-valued maps. Concerning Lipschitz continuous set-valued
diffusion terms, uniqueness holds. At last two examples for application are given.
|
5 |
A parabolic stochastic differential inclusionBauwe, Anne, Grecksch, Wilfried 06 October 2005 (has links)
Stochastic differential inclusions can be considered as a generalisation of stochastic
differential equations. In particular a multivalued mapping describes the set
of equations, in which a solution has to be found.
This paper presents an existence result for a special parabolic stochastic inclusion.
The proof is based on the method of upper and lower solutions. In the deterministic
case this method was effectively introduced by S. Carl.
|
Page generated in 0.0522 seconds