• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 5
  • 5
  • 4
  • Tagged with
  • 50
  • 50
  • 22
  • 16
  • 14
  • 11
  • 11
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Algorithmes par decomposition de domaine et méthodes de discrétisation d'ordre elevé pour la résolution des systèmes d'équations aux dérivées partielles. Application aux problèmes issus de la mécanique des fluides et de l'électromagnétisme

Dolean, Victorita 07 July 2009 (has links) (PDF)
My main research topic is about developing new domain decomposition algorithms for the solution of systems of partial differential equations. This was mainly applied to fluid dynamics problems (as compressible Euler or Stokes equations) and electromagnetics (time-harmonic and time-domain first order system of Maxwell's equations). Since the solution of large linear systems is strongly related to the application of a discretization method, I was also interested in developing and analyzing the application of high order methods (such as Discontinuos Galerkin methods) to Maxwell's equations (sometimes in conjuction with time-discretization schemes in the case of time-domain problems). As an active member of NACHOS pro ject (besides my main afiliation as an assistant professor at University of Nice), I had the opportunity to develop certain directions in my research, by interacting with permanent et non-permanent members (Post-doctoral researchers) or participating to supervision of PhD Students. This is strongly refflected in a part of my scientific contributions so far. This memoir is composed of three parts: the first is about the application of Schwarz methods to fluid dynamics problems; the second about the high order methods for the Maxwell's equations and the last about the domain decomposition algorithms for wave propagation problems.
12

Hybrid Solvers for the Maxwell Equations in Time-Domain

Edelvik, Fredrik January 2002 (has links)
The most commonly used method for the time-domain Maxwell equations is the Finite-Difference Time-Domain method (FDTD). This is an explicit, second-order accurate method, which is used on a staggered Cartesian grid. The main drawback with the FDTD method is its inability to accurately model curved objects and small geometrical features. This is due to the Cartesian grid, which leads to a staircase approximation of the geometry and small details are not resolved at all. This thesis presents different ways to circumvent this drawback, but still take advantage of the benefits of the FDTD method. An approach to avoid staircasing errors but still retain the efficiency of the FDTD method is to use a hybrid grid. A few layers of unstructured cells are used close to curved objects and a Cartesian grid is used for the rest of the domain. For the choice of solver on the unstructured grid two different alternatives are compared: an explicit Finite-Volume Time-Domain (FVTD) solver and an implicit Finite-Element Time-Domain (FETD) solver. The hybrid solvers calculate the scattering from complex objects much more efficiently compared to using FDTD on highly resolved Cartesian grids. For the same accuracy in the solution roughly a factor of 10 in memory requirements and a factor of 20 in execution time are gained. The ability to model features that are small relative to the cell size is often important in electromagnetic simulations. In this thesis a technique to generalize a well-known subcell model for thin wires, in order to take arbitrarily oriented wires in FETD and FDTD into account, is proposed. The method gives considerable modeling flexibility compared to earlier methods and is proven stable. The results show excellent consistency and very good accuracy on different antenna configurations. The recursive convolution method is often used to model frequency dispersive materials in FDTD. This method is used to enable modeling of such materials in the unstructured FVTD and FETD solvers. The stability of both solvers is analyzed and their accuracy is demonstrated by computing the radar cross section for homogeneous as well as layered spheres with frequency dependent permittivity.
13

On a third-order FVTD scheme for three-dimensional Maxwell's Equations

Kotovshchikova, Marina 12 January 2016 (has links)
This thesis considers the application of the type II third order WENO finite volume reconstruction for unstructured tetrahedral meshes proposed by Zhang and Shu in (CCP, 2009) and the third order multirate Runge-Kutta time-stepping to the solution of Maxwell's equations. The dependance of accuracy of the third order WENO scheme on the small parameter in the definition of non-linear weights is studied in detail for one-dimensional uniform meshes and numerical results confirming the theoretical analysis are presented for the linear advection equation. This analysis is found to be crucial in the design of the efficient three-dimensional WENO scheme, full details of which are presented. Several multirate Runge-Kutta (MRK) schemes which advance the solution with local time-steps assigned to different multirate groups are studied. Analysis of accuracy of three different MRK approaches for linear problems based on classic order-conditions is presented. The most flexible and efficient multirate schemes based on works by Tang and Warnecke (JCM, 2006) and Liu, Li and Hu (JCP, 2010) are implemented in three-dimensional finite volume time-domain (FVTD) method. The main characteristics of chosen MRK schemes are flexibility in defining the time-step ratios between multirate groups and consistency of the scheme. Various approaches to partition the three-dimensional computational domain into multirate groups to maximize the achievable speedup are discussed. Numerical experiments with three-dimensional electromagnetic problems are presented to validate the performance of the proposed FVTD method. Three-dimensional results agree with theoretical and numerical accuracy analysis performed for the one-dimensional case. The proposed implementation of multirate schemes demonstrates greater speedup than previously reported in literature. / February 2016
14

Modelování ohřevu tkání v KV diatermii / Model of tissue heating by KV diathermy

Bažantová, Lucie January 2012 (has links)
This thesis deals with the basic theory of the electromagnetic field in the first part and the field interactions with biological tissues. Than describes shortwave diathermy as a technique used for purposes of medical treatment. The aim is to built a model of tissue heating in shortwave diathermy in COMSOL Multiphysics environment, so there is included a description of the programming environment, including the mathematical method that COMSOL uses for calculations. The output of the whole work is a model of the lower limb in the knee part and display the results after his diathermy heating.
15

Hybrid Methods for Computational Electromagnetics in Frequency Domain

Hagdahl, Stefan January 2005 (has links)
<p>In this thesis we study hybrid numerical methods to be used in computational electromagnetics. The purpose is to address a wide frequency range relative to a given geometry. We also focus on efficient and robust numerical algorithms for computing the so called Smooth Surface Diffraction predicted by Geometrical Theory of Diffraction (GTD). We restrict the presentation to frequency domain scattering problems.</p><p>The hybrid methods consist in combinations of Boundary Element Methods and asymptotic methods. Three hybrids will be presented. One of them has been developed from a theoretical idea to an industrial code. The two other hybrids will be presented mainly from a theoretical perspective.</p><p>To be able to compute the Smooth Surface Diffracted field we introduce a numerical method that is to be used with surface curvature sensitive meshing, complemented with auxiliary data taken from a geometry database. By using two geometry representations we can show first order convergence and we then achieve an efficient and robust numerical algorithm. This numerical algorithm may be an essential part of an GTD implementation which in its turn is a component in the hybrid methods.</p><p>As a background to our new techiniques we will also give short introductions to the Boundary Element Method and the Geometrical Theory of Diffraction from a theoretical and implementational point of view.</p>
16

Hybrid Methods for Computational Electromagnetics in Frequency Domain

Hagdahl, Stefan January 2005 (has links)
In this thesis we study hybrid numerical methods to be used in computational electromagnetics. The purpose is to address a wide frequency range relative to a given geometry. We also focus on efficient and robust numerical algorithms for computing the so called Smooth Surface Diffraction predicted by Geometrical Theory of Diffraction (GTD). We restrict the presentation to frequency domain scattering problems. The hybrid methods consist in combinations of Boundary Element Methods and asymptotic methods. Three hybrids will be presented. One of them has been developed from a theoretical idea to an industrial code. The two other hybrids will be presented mainly from a theoretical perspective. To be able to compute the Smooth Surface Diffracted field we introduce a numerical method that is to be used with surface curvature sensitive meshing, complemented with auxiliary data taken from a geometry database. By using two geometry representations we can show first order convergence and we then achieve an efficient and robust numerical algorithm. This numerical algorithm may be an essential part of an GTD implementation which in its turn is a component in the hybrid methods. As a background to our new techiniques we will also give short introductions to the Boundary Element Method and the Geometrical Theory of Diffraction from a theoretical and implementational point of view.
17

A Hybrid Spectral-Element / Finite-Element Time-Domain Method for Multiscale Electromagnetic Simulations

Chen, Jiefu January 2010 (has links)
<p>In this study we propose a fast hybrid spectral-element time-domain (SETD) / finite-element time-domain (FETD) method for transient analysis of multiscale electromagnetic problems, where electrically fine structures with details much smaller than a typical wavelength and electrically coarse structures comparable to or larger than a typical wavelength coexist.</p><p>Simulations of multiscale electromagnetic problems, such as electromagnetic interference (EMI), electromagnetic compatibility (EMC), and electronic packaging, can be very challenging for conventional numerical methods. In terms of spatial discretization, conventional methods use a single mesh for the whole structure, thus a high discretization density required to capture the geometric characteristics of electrically fine structures will inevitably lead to a large number of wasted unknowns in the electrically coarse parts. This issue will become especially severe for orthogonal grids used by the popular finite-difference time-domain (FDTD) method. In terms of temporal integration, dense meshes in electrically fine domains will make the time step size extremely small for numerical methods with explicit time-stepping schemes. Implicit schemes can surpass stability criterion limited by the Courant-Friedrichs-Levy (CFL) condition. However, due to the large system matrices generated by conventional methods, it is almost impossible to employ implicit schemes to the whole structure for time-stepping.</p><p>To address these challenges, we propose an efficient hybrid SETD/FETD method for transient electromagnetic simulations by taking advantages of the strengths of these two methods while avoiding their weaknesses in multiscale problems. More specifically, a multiscale structure is divided into several subdomains based on the electrical size of each part, and a hybrid spectral-element / finite-element scheme is proposed for spatial discretization. The hexahedron-based spectral elements with higher interpolation degrees are efficient in modeling electrically coarse structures, and the tetrahedron-based finite elements with lower interpolation degrees are flexible in discretizing electrically fine structures with complex shapes. A non-spurious finite element method (FEM) as well as a non-spurious spectral element method (SEM) is proposed to make the hybrid SEM/FEM discretization work. For time integration we employ hybrid implicit / explicit (IMEX) time-stepping schemes, where explicit schemes are used for electrically coarse subdomains discretized by coarse spectral element meshes, and implicit schemes are used to overcome the CFL limit for electrically fine subdomains discretized by dense finite element meshes. Numerical examples show that the proposed hybrid SETD/FETD method is free of spurious modes, is flexible in discretizing sophisticated structure, and is more efficient than conventional methods for multiscale electromagnetic simulations.</p> / Dissertation
18

Direct and Inverse Methods for Waveguides and Scattering Problems in the Time Domain

Abenius, Erik January 2005 (has links)
Numerical simulation is an important tool in understanding the electromagnetic field and how it interacts with the environment. Different topics for time-domain finite-difference (FDTD) and finite-element (FETD) methods for Maxwell's equations are treated in this thesis. Subcell models are of vital importance for the efficient modeling of small objects that are not resolved by the grid. A novel model for thin sheets using shell elements is proposed. This approach has the advantage of taking into account discontinuities in the normal component of the electric field, unlike previous models based on impedance boundary conditions (IBCs). Several results are presented to illustrate the capabilities of the shell element approach. Waveguides are of fundamental importance in many microwave applications, for example in antenna feeds. The key issues of excitation and truncation of waveguides are addressed. A complex frequency shifted form of the uniaxial perfectly matched layer (UPML) absorbing boundary condition (ABC) in FETD is developed. Prism elements are used to promote automatic grid generation and enhance the performance. Results are presented where reflection errors below -70dB are obtained for different types of waveguides, including inhomogeneous cases. Excitation and analysis via the scattering parameters are achieved using waveguide modes computed by a general frequency-domain mode solver for the vector Helmholtz equation. Huygens surfaces are used in both FDTD and FETD for excitation in waveguide ports. Inverse problems have received an increased interest due to the availability of powerful computers. An important application is non-destructive evaluation of material. A time-domain, minimization approach is presented where exact gradients are computed using the adjoint problem. The approach is applied to a general form of Maxwell's equations including dispersive media and UPML. Successful reconstruction examples are presented both using synthetic and experimental measurement data. Parameter reduction of complex geometries using simplified models is an interesting topic that leads to an inverse problem. Gradients for subcell parameters are derived and a successful reconstruction example is presented for a combined dielectric sheet and slot geometry.
19

Spatio-Temporal Theory of Optical Kerr Nonlinear Instability

Nesrallah, Michael J. January 2016 (has links)
This work derives a nonlinear optical spatio-temporal instability. It is a perturbative analysis that begins from Maxwell’s equations and its constituent relations to derive a vectorial nonlinear wave equation. In fact, it is a new theoretical method that has been developed that builds on previous aspects of nonlinear optics in a more general way. The perturbation in the wave equation derived is coupled with its complex conjugate which has been taken for granted so far. Once decoupled it gives rise to a second-order equation and thus a true instability regime because the wavevector can become complex. The solution obtained for the perturbation that co-propagates with the driving laser is a generalization to modulation and filamentation instability, extending beyond the nonlinear Schrodinger and nonlinear transverse diffusion equations[1][2]. As a result of this new mechanism, new phenomena can be explored. For example, the Kerr Nonlinear Instability can lead to exponential growth, and hence amplification. This can occur even at wavelengths that are typically hard to operate at, such as into far infrared wave- lengths. This provides a mechanism for obtaining amplification in the far infrared from a small seed pulse without the need for population inversion. The analysis provides the basic framework that can be extended to many different avenues. This will be the subject of future work, as outlined in the conclusion of this thesis.
20

On local constraints and regularity of PDE in electromagnetics : applications to hybrid imaging inverse problems

Alberti, Giovanni S. January 2014 (has links)
The first contribution of this thesis is a new regularity theorem for time harmonic Maxwell's equations with less than Lipschitz complex anisotropic coefficients. By using the L<sup>p</sup> theory for elliptic equations, it is possible to prove H<sup>1</sup> and Hölder regularity results, provided that the coefficients are W<sup>1,p</sup> for some p = 3. This improves previous regularity results, where the assumption W<sup>1,∞</sup> for the coefficients was believed to be optimal. The method can be easily extended to the case of bi-anisotropic materials, for which a separate approach turns out to be unnecessary. The second focus of this work is the boundary control of the Helmholtz and Maxwell equations to enforce local constraints inside the domain. More precisely, we look for suitable boundary conditions such that the corresponding solutions and their derivatives satisfy certain local non-zero constraints. Complex geometric optics solutions can be used to construct such illuminations, but are impractical for several reasons. We propose a constructive approach to this problem based on the use of multiple frequencies. The suitable boundary conditions are explicitly constructed and give the desired constraints, provided that a finite number of frequencies, given a priori, are chosen in a fixed range. This method is based on the holomorphicity of the solutions with respect to the frequency and on the regularity theory for the PDE under consideration. This theory finds applications to several hybrid imaging inverse problems, where the unknown coefficients have to be imaged from internal measurements. In order to perform the reconstruction, we often need to find suitable boundary conditions such that the corresponding solutions satisfy certain non-zero constraints, depending on the particular problem under consideration. The multiple frequency approach introduced in this thesis represents a valid alternative to the use of complex geometric optics solutions to construct such boundary conditions. Several examples are discussed.

Page generated in 0.3119 seconds