Spelling suggestions: "subject:"maxwell's equations"" "subject:"maxwell's aquations""
41 |
Rapid Modeling and Simulation Methods for Large-Scale and Circuit-Intuitive Electromagnetic Analysis of Integrated Circuits and SystemsLi Xue (9733025) 14 December 2020 (has links)
<div>Accurate, fast, large-scale, and circuit-intuitive electromagnetic analysis is of critical importance to the design of integrated circuits (IC) and systems. Existing methods for the analysis of integrated circuits and systems have not satisfactorily achieved these performance goals. In this work, rapid modeling and simulation methods are developed for large-scale and circuit-intuitive electromagnetic analysis of integrated circuits and systems. The derived model is correct from zero to high frequencies where Maxwell's equations are valid. In addition, in the proposed model, we are able to analytically decompose the layout response into static and full-wave components with neither numerical computation nor approximation. This decomposed yet rigorous model greatly helps circuit diagnoses since now designers are able to analyze each component one by one, and identify which component is the root cause for the design failure. Such a decomposition also facilitates efficient layout modeling and simulation, since if an IC is dominated by RC effects, then we do not have to compute the full-wave component; and vice versa. Meanwhile, it makes parallelization straightforward. In addition, we develop fast algorithms to obtain each component of the inverse rapidly. These algorithms are also applicable for solving general partial differential equations for fast electromagnetic analysis.</div><div><br></div><div>The fast algorithms developed in this work are as follows. First, an analytical method is developed for finding the nullspace of the curl-curl operator in an arbitrary mesh for an arbitrary order of curl-conforming vector basis function. This method has been applied successfully to both a finite-difference and a finite-element based analysis of general 3-D structures. It can be used to obtain the static component of the inverse efficiently. An analytical method for finding the complementary space of the nullspace is also developed. Second, using the analytically found nullspace and its complementary space, a rigorous method is developed to overcome the low-frequency breakdown problem in the full-wave analysis of general lossy problems, where both dielectrics and conductors can be lossy and arbitrarily inhomogeneous. The method is equally valid at high frequencies without any need for changing the formulation. Third, with the static component part solved, the full-wave component is also ready to obtain. There are two ways. In the first way, the full-wave component is efficiently represented by a small number of high-frequency modes, and a fast method is created to find these modes. These modes constitute a significantly reduced order model of the complementary space of the nullspace. The second way is to utilize the relationship between the curl-curl matrix and the Laplacian matrix. An analytical method to decompose the curl-curl operator to a gradient-divergence operator and a Laplacian operator is developed. The derived Laplacian matrix is nothing but the curl-curl matrix's Laplacian counterpart. They share the same set of non-zero eigenvalues and eigenvectors. Therefore, this Laplacian matrix can be used to replace the original curl-curl matrix when operating on the full-wave component without any computational cost, and an iterative solution can converge this modified problem much faster irrespective of the matrix size. The proposed work has been applied to large-scale layout extraction and analysis. Its performance in accuracy, efficiency, and capacity has been demonstrated.</div>
|
42 |
Transmission problems for Dirac's and Maxwell's equations with Lipschitz interfacesAxelsson, Andreas, kax74@yahoo.se January 2002 (has links)
The aim of this thesis is to give a mathematical framework for scattering of electromagnetic waves by rough surfaces. We prove that the Maxwell transmission problem with a weakly Lipschitz interface,in finite energy norms, is well posed in Fredholm sense for real frequencies. Furthermore, we give precise conditions on the material constants ε, μ and σ and the frequency ω when this transmission problem is well posed. To solve the Maxwell transmission problem, we embed Maxwells equations in an elliptic Dirac equation. We develop a new boundary integral method to solve the Dirac transmission problem. This method uses a boundary integral operator, the rotation operator, which factorises the double layer potential operator. We prove spectral estimates for this rotation operator in finite energy norms using Hodge decompositions on weakly Lipschitz domains. To ensure that solutions to the Dirac transmission problem indeed solve Maxwells equations, we introduce an exterior/interior derivative operator acting in the trace space. By showing that this operator commutes with the two basic reflection operators, we are able to prove that the Maxwell transmission problem is well posed. We also prove well-posedness for a class of oblique Dirac transmission problems with a strongly Lipschitz interface, in the L_2 space on the interface. This is shown by employing the Rellich technique, which gives angular spectral estimates on the rotation operator.
|
43 |
Fast algorithms for frequency domain wave propagationTsuji, Paul Hikaru 22 February 2013 (has links)
High-frequency wave phenomena is observed in many physical settings, most notably in acoustics, electromagnetics, and elasticity. In all of these fields, numerical simulation and modeling of the forward propagation problem is important to the design and analysis of many systems; a few examples which rely on these computations are the development of
metamaterial technologies and geophysical prospecting for natural resources. There are two modes of modeling the forward problem: the frequency domain and the time domain. As the title states, this work is concerned with the former regime.
The difficulties of solving the high-frequency wave propagation problem accurately lies in the large number of degrees of freedom required. Conventional wisdom in the computational electromagnetics commmunity suggests that about 10 degrees of freedom per wavelength be used in each coordinate direction to resolve each oscillation. If K is the width of the domain in wavelengths, the number of unknowns N grows at least by O(K^2) for surface discretizations and O(K^3) for volume discretizations in 3D. The memory requirements and asymptotic complexity estimates of direct algorithms such as the multifrontal method are too costly for such problems. Thus, iterative solvers must be used. In this dissertation, I will present fast algorithms which, in conjunction with GMRES, allow the solution of the forward problem in O(N) or O(N log N) time. / text
|
44 |
Stability of finite element solutions to Maxwell's equations in frequency domainSchwarzbach, Christoph 12 October 2009 (has links) (PDF)
Eine Standardformulierung der Randwertaufgabe für die Beschreibung zeitharmonischer elektromagnetischer Phänomene hat die Vektor-Helmholtzgleichung für das elektrische Feld zur Grundlage. Bei niedrigen Frequenzen führt der große Nullraum des Rotationsoperators zu einem instabilen Lösungsverhalten. Wird die Randwertaufgabe zum Beispiel mit Hilfe der Methode der Finiten Elemente in ein lineares Gleichungssystem überführt, äußert sich die Instabilität in einer schlechten Konditionszahl ihrer Koeffizientenmatrix. Eine stabilere Formulierung wird durch die explizite Berücksichtigung der Kontinuitätsgleichung erreicht. Zur numerischen Lösung der Randwertaufgaben wurde eine Finite-Elemente-Software erstellt. Sie berücksichtigt unter anderem unstrukturierte Gitter, räumlich variable, anisotrope Materialparameter sowie die Erweiterung der Maxwell-Gleichungen durch Perfectly Matched Layers. Die Software wurde anhand von Anwendungen in der marinen Geophysik erfolgreich getestet. Insbesondere demonstriert die Einbeziehung von Seebodentopographie in Form einer stetigen Oberflächentriangulierung die geometrische Flexibilität der Software. / The physics of time-harmonic electromagnetic phenomena can be mathematically described by boundary value problems. A standard approach is based on the vector Helmholtz equation in terms of the electric field. The curl operator involved has a large, non-trivial kernel which leads to an instable solution behaviour at low frequencies. If the boundary value problem is solved approximately using, e. g., the
finite element method, the instability expresses itself by a badly conditioned coefficient matrix of the ensuing system of linear equations. A stable formulation is obtained by taking the continuity equation explicitly into account. In order to solve the boundary value problem numerically a finite element software package has been implemented. Its features comprise, amongst others, the treatment of
unstructured meshes and piecewise polynomial, anisotropic constitutive parameters as well as the extension of Maxwell’s equations to the Perfectly Matched Layer. Successful application of the software is demonstrated with examples from marine geophysics. In particular, the incorporation of seafloor topography by a continuous
surface triangulation illustrates the geometric flexibility of the software.
|
45 |
Modélisation analytique tridimensionnelle de nouvelles structures de génératrices électriques destinées à l'éolien de forte puissance / Three-dimensional analytical modeling of new electric generator structures for high power wind turbinesAden Diriye, Abdourahman 03 April 2018 (has links)
Cette thèse s’inscrit dans une thématique de recherche prioritaire développée par le laboratoire GREAH et portant sur l’optimisation de l'efficacité énergétique des systèmes de gestion et de production de l’énergie électrique. Dans ce cadre, les performances de convertisseurs d’énergie (machines électriques pour la conversion de l'énergie électromécanique) ont un impact déterminant sur l'efficacité énergétique de la conversion et sur la qualité de gestion de l'énergie électrique en termes de rendement, de maximisation de la puissance massique, de réduction des émissions, de réduction des coûts, ce qui nécessite, par conséquent, un effort particulier de conception et de dimensionnement. L’objectif principal de cette thèse vise à développer un modèle léger permettant d’exploiter assez rapidement l’espace des solutions potentiellement optimales dans la première phase de la conception des machines synchrones à aimants permanents. Les travaux présentés dans ce mémoire de thèse portent sur la modélisation électromagnétique pour le pré-dimensionnement et la conception des machines synchrones à aimants permanents intégrées dans l’éolien de fort puissance. Dans ce manuscrit, deux approches de modélisation des machines électriques ont été proposées. La modélisation par réseau de réluctances présentée consiste à découper le domaine d’étude en un certain nombre d’éléments volumiques dont chacun est décomposé en tubes de flux. La modélisation analytique hybride proposée est basée sur un couplage fort entre un réseau de réluctances généré à partir d’un maillage du domaine d’étude et une solution formelle des équations de Maxwell dans les régions de faible perméabilité (entrefer magnétique). Les résultats obtenus à partir de ces modèles sont validés par les résultats correspondants issus de la méthode des éléments finis. Pour montrer le gain obtenu en temps de calcul, les temps d’exécutions des codes de calcul sont comparés aux temps mis par le logiciel Flux. / This subject of the thesis is part of a priority research theme developed by the GREAH laboratory on the optimization of the energy efficiency of electrical energy management and production systems. In this context, the performance of energy converters (electrical machines for the conversion of electromechanical energy) have a decisive impact on the energy efficiency of the conversion and on the quality of electrical energy management in terms of efficiency, reduction of emissions, reduction of costs, which therefore requires a special effort to design. The main objective of this thesis is to develop a light model allowing to exploit fairly quickly the space of potentially optimal solutions in the first phase of machine design. The work presented in this thesis focuses on electromagnetic modeling for the pre-design of permanent magnets synchronous machines integrated into high power wind turbines. In this manuscript, two modeling approaches of electric machines have been proposed. The presented reluctance network modeling is generated from the mesh of studied domain as the finite element method. Reluctance elements are used for the mesh. The proposed hybrid analytical modeling is based on a strong coupling between a reluctances network generated from a mesh of the study domain and analytical models based on the formal solution of Maxwell’s equations in regions of low permeability (magnetic gap). This approach can help solve the problem of air-gap modeling in MEC method, and the consideration of the local magnetic saturation in modeling approaches involving analytical technique. The results obtained from these models are validated by the corresponding results from the finite element method and very good has been observed. To indicate the gain obtained in time, the execution times of the programs are compared to the times set by the Flux software.
|
46 |
Méthodes Galerkine discontinues localement implicites en domaine temporel pour la propagation des ondes électromagnétiques dans les tissus biologiques / Locally implicit discontinuous Galerkin time-domain methods for electromagnetic wave propagation in biological tissuesMoya, Ludovic 16 December 2013 (has links)
Cette thèse traite des équations de Maxwell en domaine temporel. Le principal objectif est de proposer des méthodes de type éléments finis d'ordre élevé pour les équations de Maxwell et des schémas d'intégration en temps efficaces sur des maillages localement raffinés. Nous considérons des méthodes GDDT (Galerkine Discontinues en Domaine Temporel) s'appuyant sur une interpolation polynomiale d'ordre arbitrairement élevé des composantes du champ électromagnétique. Les méthodes GDDT pour les équations de Maxwell s'appuient le plus souvent sur des schémas d'intégration en temps explicites dont la condition de stabilité peut être très restrictive pour des maillages raffinés. Pour surmonter cette limitation, nous considérons des schémas en temps qui consistent à appliquer un schéma implicite localement, dans les régions raffinées, tout en préservant un schéma explicite sur le reste du maillage. Nous présentons une étude théorique complète et une comparaison de deux méthodes GDDT localement implicites. Des expériences numériques en 2D et 3D illustrent l'utilité des schémas proposés. Le traitement numérique de milieux de propagation complexes est également l'un des objectifs. Nous considérons l'interaction des ondes électromagnétiques avec les tissus biologiques qui est au cœur de nombreuses applications dans le domaine biomédical. La modélisation numérique nécessite alors de résoudre le système de Maxwell avec des modèles appropriés de dispersion. Nous formulons une méthode GDDT localement implicite pour le modèle de Debye et proposons une analyse théorique et numérique complète du schéma. / This work deals with the time-domain formulation of Maxwell's equations. The main objective is to propose high-order finite element type methods for the discretization of Maxwell's equations and efficient time integration methods on locally refined meshes. We consider Discontinuous Galerkin Time-Domain (DGTD) methods relying on an arbitrary high-order polynomial interpolation of the components of the electromagnetic field. Existing DGTD methods for Maxwell's equations often rely on explicit time integration schemes and are constrained by a stability condition that can be very restrictive on highly refined meshes. To overcome this limitation, we consider time integration schemes that consist in applying an implicit scheme locally i.e. in the refined regions of the mesh, while preserving an explicit scheme in the complementary part. We present a full theoretical study and a comparison of two locally implicit DGTD methods. Numerical experiments for 2D and 3D problems illustrate the usefulness of the proposed time integration schemes. The numerical treatment of complex propagation media is also one of the objectives. We consider the interaction of electromagnetic waves with biological tissues that is of interest to applications in biomedical domain. Numerical modeling then requires to solve the system of Maxwell's equations coupled to appropriate models of physical dispersion. We derive a locally implicit DGTD method for the Debye model and we achieve a full theoretical and numerical analysis of the resulting scheme.
|
47 |
Stability of finite element solutions to Maxwell's equations in frequency domainSchwarzbach, Christoph 10 August 2009 (has links)
Eine Standardformulierung der Randwertaufgabe für die Beschreibung zeitharmonischer elektromagnetischer Phänomene hat die Vektor-Helmholtzgleichung für das elektrische Feld zur Grundlage. Bei niedrigen Frequenzen führt der große Nullraum des Rotationsoperators zu einem instabilen Lösungsverhalten. Wird die Randwertaufgabe zum Beispiel mit Hilfe der Methode der Finiten Elemente in ein lineares Gleichungssystem überführt, äußert sich die Instabilität in einer schlechten Konditionszahl ihrer Koeffizientenmatrix. Eine stabilere Formulierung wird durch die explizite Berücksichtigung der Kontinuitätsgleichung erreicht. Zur numerischen Lösung der Randwertaufgaben wurde eine Finite-Elemente-Software erstellt. Sie berücksichtigt unter anderem unstrukturierte Gitter, räumlich variable, anisotrope Materialparameter sowie die Erweiterung der Maxwell-Gleichungen durch Perfectly Matched Layers. Die Software wurde anhand von Anwendungen in der marinen Geophysik erfolgreich getestet. Insbesondere demonstriert die Einbeziehung von Seebodentopographie in Form einer stetigen Oberflächentriangulierung die geometrische Flexibilität der Software. / The physics of time-harmonic electromagnetic phenomena can be mathematically described by boundary value problems. A standard approach is based on the vector Helmholtz equation in terms of the electric field. The curl operator involved has a large, non-trivial kernel which leads to an instable solution behaviour at low frequencies. If the boundary value problem is solved approximately using, e. g., the
finite element method, the instability expresses itself by a badly conditioned coefficient matrix of the ensuing system of linear equations. A stable formulation is obtained by taking the continuity equation explicitly into account. In order to solve the boundary value problem numerically a finite element software package has been implemented. Its features comprise, amongst others, the treatment of
unstructured meshes and piecewise polynomial, anisotropic constitutive parameters as well as the extension of Maxwell’s equations to the Perfectly Matched Layer. Successful application of the software is demonstrated with examples from marine geophysics. In particular, the incorporation of seafloor topography by a continuous
surface triangulation illustrates the geometric flexibility of the software.
|
48 |
Numerics of photonic and plasmonic nanostructures with advanced material modelsKiel, Thomas 18 May 2022 (has links)
In dieser Arbeit untersuchen wir mehrere Anwendungen von photonischen und plasmonischen Nanostrukturen unter Verwendung zweier verschiedener numerischer Methoden: die Fourier-Moden-Methode (FMM) und ein unstetiges Galerkin-Zeitraumverfahren (discontinuous Galerkin time-domain method, DGTD method). Die Methoden werden für vier verschiedene Anwendungen eingesetzt, die alle eine Materialmodellerweiterung in der Implementierung der Methoden erfordern. Diese Anwendungen beinhalten die Untersuchung von dünnen, freistehenden, periodisch perforierten Goldfilmen. Wir charakterisieren die auftretenden Oberflächenplasmonenpolaritonen durch die Berechnung von Transmissions- und Elektronenenergieverlustspektren, die mit experimentellen Messungen verglichen werden. Dazu stellen wir eine Erweiterung der DGTD-Methode zur Verfügung, die sowohl absorbierende, impedanzangepasste Randschichten als auch Anregung mit geglätteter Ladungsverteilung für materialdurchdringende Elektronenstrahlen beinhaltet. Darüber hinaus wird eine Erweiterung auf nicht-dispersive anisotrope Materialien für eine Formoptimierung einer volldielektrischen magneto-optischen Metaoberfläche verwendet. Diese Optimierung ermöglicht eine verstärkte Faraday-Rotation zusammen mit einer hohen Transmission. Zusätzlich untersuchen wir abstimmbare hyperbolische Metamaterialresonatoren im nahen Infrarot mit Hilfe der FMM. Wir berechnen deren Resonanzen und vergleichen sie mit dem Experiment. Zum Schluss wird die Implementierung eines nichtlinearen Vier-Niveau-System-Materialmodells in der DGTD-Methode verwendet, um die Laserschwellen eines Mikroresonators mit Bragg-Spiegeln zu berechnen. Bei Einführung eines Silbergitters mit variablen Spaltgrößen wird eine defektinduzierte Kontrolle der Laserschwellen ermöglicht. Die Berechnung der vollständigen, zeitaufgelösten Felddynamik innerhalb des Resonator gibt dabei Aufschluss über die beteiligten Lasermoden. / In this thesis, we study several applications of photonic and plasmonic nanostructures by
employing two different numerical methods: the Fourier modal method (FMM) and discontinuous Galerkin time-domain (DGTD) method. The methods are used for four different applications, all of which require a material model extension for the implementation of the methods. These applications include the investigation of thin, free-standing periodically perforated gold films. We characterize the emerging surface plasmon polaritons by computing both transmittance and electron energy loss spectra, which are compared to experimental measurements. To this end, we provide an extension of the DGTD method, including absorbing stretched coordinate perfectly matched layers as well as excitations with smoothed charge distribution for material-penetrating electron beams. Furthermore, an extension to non-dispersive anisotropic materials is used for shape optimization of an all-dielectric magneto-optic metasurface. This optimization enables an enhanced Faraday rotation along with high transmittance. Additionally, we study tuneable near-infrared hyperbolic metamaterial cavities with the help of the FMM. We compute the cavity resonances and compare them to the experiment. Finally, the implementation of a non-linear four-level system material model in the DGTD method is used to compute lasing thresholds of a distributed Bragg reflector microcavity. Introducing a silver grating with variable gap sizes allows for a defect-induced lasing threshold control. The computation of the full time-resolved field dynamics of the cavity provides information on the involved lasing modes.
|
49 |
Circuit Simulation Including Full-Wave Maxwell's Equations / Modeling Aspects and Numerical AnalysisStrohm, Christian 15 March 2021 (has links)
Diese Arbeit widmet sich der Simulation von elektrischen/elektronischen Schaltungen welche um elektromagnetische Bauelemente erweitert werden. Im Fokus stehen unterschiedliche Kopplungen der Schaltungsgleichungen, modelliert mit der modifizierten Knotenanalyse, und den elektromagnetischen Bauelementen mit deren verfeinerten Modell basierend auf den vollen Maxwell-Gleichungen in der Lorenz-geeichten A-V Formulierung welche durch Finite-Integrations-Technik räumlich diskretisiert werden. Eine numerische Analyse erweitert die topologischen Kriterien für den Index der resultierenden differential-algebraischen Gleichungen, wie sie bereits in anderen Arbeiten mit ähnlichen Feld/Schaltkreis-Kopplungen hergeleitet wurden. Für die Simulation werden sowohl ein monolithischer Ansatz als auch Waveform-Relaxationsmethoden untersucht. Im Mittelpunkt stehen dabei Zeitintegration, Skalierungsmethoden, strukturelle Eigenschaften und ein hybride Ansatz zur Lösung der zugrundeliegenden linearen Gleichungssysteme welcher den Einsatz spezialisierter Löser für die jeweiligen Teilsysteme erlaubt. Da die vollen Maxwell-Gleichungen zusätzliche Ableitungen in der Kopplungsstruktur verursachen, sind bisher existierende Konvergenzaussagen für die Waveform-Relaxation von gekoppelten differential-algebraischen Gleichungen nicht anwendbar und motivieren eine neue Konvergenzanalyse. Auf dieser Analyse aufbauend werden hinreichende topologische Kriterien entwickelt, welche eine Konvergenz von Gauß-Seidel- und Jacobi-artigen Waveform-Relaxationen für die gekoppelten Systeme garantieren. Schließlich werden numerische Benchmarks zur Verfügung gestellt, um die eingeführten Methoden und Theoreme dieser Abhandlung zu unterstützen. / This work is devoted to the simulation of electrical/electronic circuits incorporating electromagnetic devices. The focus is on different couplings of the circuit equations, modeled with the modified nodal analysis, and the electromagnetic devices with their refined model based on full-wave Maxwell's equations in Lorenz gauged A-V formulation which are spatially discretized by the finite integration technique. A numerical analysis extends the topological criteria for the index of the resulting differential-algebraic equations, as already derived in other works with similar field/circuit couplings. For the simulation, both a monolithic approach and waveform relaxation methods are investigated. The focus is on time integration, scaling methods, structural properties and a hybrid approach to solve the underlying linear systems of equations with the use of specialized solvers for the respective subsystems. Since the full-Maxwell approach causes additional derivatives in the coupling structure, previously existing convergence statements for the waveform relaxation of coupled differential-algebraic equations are not applicable and motivate a new convergence analysis. Based on this analysis, sufficient topological criteria are developed which guarantee convergence of Gauss-Seidel and Jacobi type waveform relaxation schemes for introduced coupled systems. Finally, numerical benchmarks are provided to support the introduced methods and theorems of this treatise.
|
50 |
Better imaging for landmine detection : an exploration of 3D full-wave inversion for ground-penetrating radarWatson, Francis Maurice January 2016 (has links)
Humanitarian clearance of minefields is most often carried out by hand, conventionally using a a metal detector and a probe. Detection is a very slow process, as every piece of detected metal must treated as if it were a landmine and carefully probed and excavated, while many of them are not. The process can be safely sped up by use of Ground-Penetrating Radar (GPR) to image the subsurface, to verify metal detection results and safely ignore any objects which could not possibly be a landmine. In this thesis, we explore the possibility of using Full Wave Inversion (FWI) to improve GPR imaging for landmine detection. Posing the imaging task as FWI means solving the large-scale, non-linear and ill-posed optimisation problem of determining the physical parameters of the subsurface (such as electrical permittivity) which would best reproduce the data. This thesis begins by giving an overview of all the mathematical and implementational aspects of FWI, so as to provide an informative text for both mathematicians (perhaps already familiar with other inverse problems) wanting to contribute to the mine detection problem, as well as a wider engineering audience (perhaps already working on GPR or mine detection) interested in the mathematical study of inverse problems and FWI.We present the first numerical 3D FWI results for GPR, and consider only surface measurements from small-scale arrays as these are suitable for our application. The FWI problem requires an accurate forward model to simulate GPR data, for which we use a hybrid finite-element boundary-integral solver utilising first order curl-conforming N\'d\'{e}lec (edge) elements. We present a novel `line search' type algorithm which prioritises inversion of some target parameters in a region of interest (ROI), with the update outside of the area defined implicitly as a function of the target parameters. This is particularly applicable to the mine detection problem, in which we wish to know more about some detected metallic objects, but are not interested in the surrounding medium. We may need to resolve the surrounding area though, in order to account for the target being obscured and multiple scattering in a highly cluttered subsurface. We focus particularly on spatial sensitivity of the inverse problem, using both a singular value decomposition to analyse the Jacobian matrix, as well as an asymptotic expansion involving polarization tensors describing the perturbation of electric field due to small objects. The latter allows us to extend the current theory of sensitivity in for acoustic FWI, based on the Born approximation, to better understand how polarization plays a role in the 3D electromagnetic inverse problem. Based on this asymptotic approximation, we derive a novel approximation to the diagonals of the Hessian matrix which can be used to pre-condition the GPR FWI problem.
|
Page generated in 0.0861 seconds