• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Dissection concept for DAEs

Jansen, Lennart 17 March 2015 (has links)
Diese Arbeit befasst sich mit Differential-algebraischen Gleichungen (DAEs). DAEs spielen eine wichtige Rolle in der Modellierung, der Simulation und der Optimierung von Netzwerken und gekoppelten Problemen in vielen Anwendungsgebieten. Es werden in Bezug auf die Modellierung und die numerische Simulation von DAEs bereits bestehende Ergebnisse diskutiert und erweitert. Des Weiteren wird die globale eindeutige Lösbarkeit und die Sensitivität der Lösungen mit Hinsicht auf Störungen der DAEs untersucht. Häufig wird die Modellierung von multiphysikalischen Anwendungen durch die Kopplung mehrerer einzelner DAE Systeme realisiert. Diese Herangehensweise kann hochdimensionale DAEs erzeugen, welche aufgrund von Instabilitäten nicht von klassischen numerischen Methoden, simuliert werden können. Angesichts dieser Herausforderungen werden drei Ziele formuliert: Erstens wird ein globales Lösungstheorem formuliert und bewiesen, welches auf gekoppelte Systeme angewandt werden kann, um deren Kopplungsansatz mathematisch zu rechtfertigen. Zweitens werden numerische Methoden vorgestellt, welche unter wesentlich schwächeren Strukturannahmen stabil sind und sich daher für die Simulation von gekoppelten Systemen eignen. Drittens wird eine Strategie präsentiert, die es ermöglicht, explizite Methoden auf gekoppelte Systeme anzuwenden. Um diese Ziele zu erreichen, braucht man ein Entkopplungsverfahren für DAEs, welches die folgenden drei Eigenschaften erfüllt: Die Komplexität des Entkopplungsverfahrens sollte nicht die Komplexität der DAE überschreiten. Das Entkopplungsverfahren sollte Eigenschaften wie Symmetrie, Monotonie und positive Definitheit erhalten. Das Entkopplungsverfahren sollte durch einen Schritt-für-Schritt Ansatz mit unabhängigen Schritten realisiert werden. Sowohl das Konzept des Tractability Index als auch das des Strangeness Index liefert kein solches Entkopplungsverfahren. Daher wird hier ein neues Index Konzept eingeführt, das diesen Anforderungen entspricht. / This thesis addresses differential-algebraic equations (DAEs). They play an important role in the modeling, simulation and optimization of networks and coupled problems in various applications. The main application in this thesis are coupled problems in electric circuit simulation. We discuss and extend existing results regarding the modeling and numerical simulation of DAEs. Furthermore, we investigate the global unique solvability and the sensitivity of solutions with respect to perturbations of DAEs. Nowadays the modeling of multi-physical applications is often realized by coupling systems of DAEs together with the help of additional coupling terms. This approach may yield high dimensional DAEs which cannot be simulated, due to instabilities, by standard numerical methods. Regarding these challenges we formulate three objectives: First we provide a global solvability theorem which can be applied to coupled systems to mathematically justify their coupling approach. Second we introduce numerical methods which are stable without needing any structural assumptions. Third we provide a way to apply explicit methods to coupled systems to be able to handle the size of the coupled systems by parallelizing the algorithms. To achieve these objectives, we need a decoupling procedure which fulfills the following three properties: The complexity of the decoupling procedure has to reflect the complexity of the DAE, i.e. the decoupling procedure should be state-independent if possible. The decoupling procedure should preserve properties like symmetry, monotonicity and positive definiteness. The decoupling procedure should be realized by a step-by-step approach with independent stages. Both the Tractability Index concept and the Strangeness Index concept do not provide such a decoupling procedure. For this reason we introduce a new index concept which provides such a decoupling procedure.
2

Splitting Methods for Partial Differential-Algebraic Systems with Application on Coupled Field-Circuit DAEs

Diab, Malak 28 February 2023 (has links)
Die Anwenung von Operator-Splitting-Methoden auf gewöhnliche Differentialgleichungen ist gut etabliert. Für Differential-algebraische Gleichungen und partielle Differential-algebraische Gleichungen unterliegt sie jedoch vielen Einschränkungen aufgrund des Vorhandenseins von Nebenbedingungen. Die räumliche Diskretisierung reduziert PDAEs und lenkt unseren Fokus auf das Konzept der DAEs. Um eine reibungslose Übertragung des Operator-Splittings von ODEs auf DAEs durchzuführen, ist es wichtig, eine geeignete entkoppelte Struktur für das gewünschte Differential-algebraische System zu haben. In dieser Arbeit betrachten wir ein Modell, das partielle Differentialgleichungen für elektromagnetische Bauelemente - modelliert durch die Maxwell-Gleichungen - mit Differential-algebraischen Gleichungen koppelt, die die elementaren Schaltungselemente beschreiben. Nach der räumlichen Diskretisierung der klassischen Formulierung der Maxwell-Gleichungen mit Hilfe der finiten Integrationstechnik formulieren wir das resultierende gekoppelte System als Differential-algebraische Gleichung. Um eine geeignete Entkopplung zu bekommen, verwenden wir den zweigorientierten Loop-Cutset-Ansatz für die Schaltungsmodellierung. Daraus folgt, dass wir in der Lage sind, eine geeignete Operatorzerlegung so zu konstruieren, dass wir eine natürliche topologisch entkoppelte Port-Hamiltonsche DAE-Struktur erhalten. Wir schlagen einen Operator-Splitting-Ansatz für die Schaltungs-DAEs und gekoppelten Feld-Schaltungs-DAEs in entkoppelter Form vor und analysieren seine numerischen Eigenschaften. Darüber hinaus nutzen wir das Hamiltonsche Verhalten der inhärenten gewöhnlichen Differentialgleichung durch die Verwendung expliziter und energieerhaltender Zeitintegrations-methoden. Schließlich führen wir numerische Tests, um das mathematische Modell zu illustrieren und die Konvergenzergebnisse für das vorgeschlagene DAE-Operator-Splitting zu demonstrieren. / Le equazioni algebriche differenziali e algebriche alle derivate parziali hanno avuto un enorme successo come modelli di sistemi dinamici vincolati. Nella modellazione matem- atica, spesso si desidera catturare diversi aspetti di una situazione come le leggi di conservazione della fisica, il trasporto convettivo o la diffusione. Queste aspetti si riflettono nel sistema di equazioni del modello come operatori diversi. La tecnica dell’Operator Splitting si è rivelata una strategia di successo per affrontare problemi così complicati. L’applicazione dei metodi di Operator Splitting alle equazioni differenziali ordinarie (ODE) è ormai una tecnologia ben consolidata. Tuttavia, per equazioni algebriche differenziali (DAE) e algebriche differenziali parziali (PDAE), l’approccio è soggetto a molte restrizioni dovute alla presenza di vincoli e alla proprietà di indice. La discretizzazione spaziale riduce le PDAE e indirizza la nostra attenzione al concetto di DAE. Le DAE emergono in problemi dinamici vincolati come circuiti elettrici o reti di trasporto di energia. Al fine di generalizzare agevolmente la tecnica dell’Operator Splitting dalle ODE alle DAE, è importante avere una struttura disaccoppiata adeguata per il sistema algebrico differenziale desiderato. In questa tesi, consideriamo un modello che accoppia equazioni differenziali alle derivate parziali per dispositivi elettromagnetici -modellati dalle equazioni di Maxwell- con equazioni algebriche differenziali che descrivono gli elementi base del circuito. Dopo aver discretizzato spazialmente la formulazione classica delle equazioni di Maxwell usando la tecnica di integrazione finita, formuliamo il sistema accoppiato risultante come una equazione algebrica differenziale. Interpretando il dispositivo elettromagnetico come un elemento capacitivo, l’indice dell’intero sistema di circuito e campo accoppiato può essere specificato utilizzando le proprietà topologiche del circuito e non supera il valore di due. Per eseguire un disaccoppiamento appropriato, utilizziamo l’approccio loop-cutset per la modellazione dei circuiti. In tal modo siamo in grado di costruire una opportuna decomposizione dell’operatore tale da ottenere una naturale struttura disaccoppiata port-Hamiltonian DAE. Proponiamo un approccio di suddivisione dell’operatore per i DAE a circuito disaccoppiato e a circuito di campo accoppiato utilizzando gli algoritmi di divisione Lie-Trotter e Strang e per analizzare le proprietà numeriche di questi sistemi. Inoltre, sfruttiamo il comportamento hamiltoniano del sistema di equazioni differenziali ordinarie mediante l’utilizzo di metodi di integrazione temporale con esatta conservazione dell’energia. Poggiando sull’analisi di convergenza del metodo di suddivisione dell’operatore ODE, deriviamo i risultati di convergenza per l’approccio proposto che dipendono dall’indice delsistema e quindi dalla sua struttura topologica. Infine, eseguiamo prove numeriche di sistemi circuitali, nonchè sistemi accoppiati a circuito di campo, per testare il modello matematico e dimostrare i risultati di convergenza per la proposta Operator Splitting DAE. / The application of operator splitting methods to ordinary differential equations (ODEs) is well established. However, for differential-algebraic equations (DAEs) and partial differential-algebraic equations (PDAEs), it is subjected to many restrictions due to the presence of constraints. In constrained dynamical problems as electrical circuits or energy transport networks, DAEs arise. In order to perform a smooth transfer of the operator splitting from ODEs to DAEs, it is important to have a suitable decoupled structure for the desired differential-algebraic system. In this thesis, we consider a model which couples partial differential equations for electro- magnetic devices -modeled by Maxwell’s equations- with differential-algebraic equations describing the basic circuit elements. After spatially discretizing the classical formulation of Maxwell’s equations using the finite integration technique, we formulate the resulting coupled system as a differential-algebraic equation. To perform an appropriate decoupling, we use the branch oriented loop-cutset approach for circuit modeling. It follows that we are able to construct a suitable operator decomposition such that we obtain a natural topologically decoupled port-Hamiltonian DAE structure. We propose an operator splitting approach for the decoupled circuit and coupled field- circuit DAEs using the Lie-Trotter and Strang splitting algorithms and analyze its numerical properties. Furthermore, we exploit the Hamiltonian behavior of the system’s inherent ordinary differential equation by the utilization of explicit and energy-preserving time integration methods. Based on the convergence analysis of the ODE operator splitting method, we derive convergence results for the proposed approach that depends on the index of the system and thus on its topological structure. Finally, we perform numerical tests, to underline the mathematical model and to demonstrate the convergence results for the proposed DAE operator splitting.
3

Circuit Simulation Including Full-Wave Maxwell's Equations / Modeling Aspects and Numerical Analysis

Strohm, Christian 15 March 2021 (has links)
Diese Arbeit widmet sich der Simulation von elektrischen/elektronischen Schaltungen welche um elektromagnetische Bauelemente erweitert werden. Im Fokus stehen unterschiedliche Kopplungen der Schaltungsgleichungen, modelliert mit der modifizierten Knotenanalyse, und den elektromagnetischen Bauelementen mit deren verfeinerten Modell basierend auf den vollen Maxwell-Gleichungen in der Lorenz-geeichten A-V Formulierung welche durch Finite-Integrations-Technik räumlich diskretisiert werden. Eine numerische Analyse erweitert die topologischen Kriterien für den Index der resultierenden differential-algebraischen Gleichungen, wie sie bereits in anderen Arbeiten mit ähnlichen Feld/Schaltkreis-Kopplungen hergeleitet wurden. Für die Simulation werden sowohl ein monolithischer Ansatz als auch Waveform-Relaxationsmethoden untersucht. Im Mittelpunkt stehen dabei Zeitintegration, Skalierungsmethoden, strukturelle Eigenschaften und ein hybride Ansatz zur Lösung der zugrundeliegenden linearen Gleichungssysteme welcher den Einsatz spezialisierter Löser für die jeweiligen Teilsysteme erlaubt. Da die vollen Maxwell-Gleichungen zusätzliche Ableitungen in der Kopplungsstruktur verursachen, sind bisher existierende Konvergenzaussagen für die Waveform-Relaxation von gekoppelten differential-algebraischen Gleichungen nicht anwendbar und motivieren eine neue Konvergenzanalyse. Auf dieser Analyse aufbauend werden hinreichende topologische Kriterien entwickelt, welche eine Konvergenz von Gauß-Seidel- und Jacobi-artigen Waveform-Relaxationen für die gekoppelten Systeme garantieren. Schließlich werden numerische Benchmarks zur Verfügung gestellt, um die eingeführten Methoden und Theoreme dieser Abhandlung zu unterstützen. / This work is devoted to the simulation of electrical/electronic circuits incorporating electromagnetic devices. The focus is on different couplings of the circuit equations, modeled with the modified nodal analysis, and the electromagnetic devices with their refined model based on full-wave Maxwell's equations in Lorenz gauged A-V formulation which are spatially discretized by the finite integration technique. A numerical analysis extends the topological criteria for the index of the resulting differential-algebraic equations, as already derived in other works with similar field/circuit couplings. For the simulation, both a monolithic approach and waveform relaxation methods are investigated. The focus is on time integration, scaling methods, structural properties and a hybrid approach to solve the underlying linear systems of equations with the use of specialized solvers for the respective subsystems. Since the full-Maxwell approach causes additional derivatives in the coupling structure, previously existing convergence statements for the waveform relaxation of coupled differential-algebraic equations are not applicable and motivate a new convergence analysis. Based on this analysis, sufficient topological criteria are developed which guarantee convergence of Gauss-Seidel and Jacobi type waveform relaxation schemes for introduced coupled systems. Finally, numerical benchmarks are provided to support the introduced methods and theorems of this treatise.
4

Numerical Analysis and Simulation of Coupled Systems of Stochastic Partial Differential Equations with Algebraic Constraints

Schade, Maximilian 20 September 2023 (has links)
Diese Dissertation befasst sich mit der Analyse von semi-expliziten Systemen aus stochastischen Differentialgleichungen (SDEs) gekoppelt mit stochastischen partiellen Differentialgleichungen (SPDEs) und algebraischen Gleichungen (AEs) mit möglicherweise stochastischen Anteilen in den Operatoren. Diese Systeme spielen eine entscheidende Rolle bei der Modellierung von realen Anwendungen, wie zum Beispiel elektrischen Schaltkreisen und Gasnetzwerken. Der Hauptbeitrag dieser Arbeit besteht darin, einen Rahmen bereitzustellen, in dem diese semiexpliziten Systeme auch bei stochastischen Einflüssen in den algebraischen Randbedingungen eine eindeutige Lösung haben. Wir führen einen numerischen Ansatz für solche Systeme ein und schlagen eine neue Möglichkeit vor, um Konvergenzergebnisse von driftimpliziten Methoden für SDEs auf stochastische Differential-Algebraische Gleichungen (SDAEs) zu erweitern. Dies ist wichtig, da viele Methoden für SDEs gut entwickelt sind, aber im Allgemeinen nicht für SDAEs in Betracht gezogen werden. Darüber hinaus untersuchen wir praktische Anwendungen in der Schaltkreis- und Gasnetzwerksimulation und diskutieren die dabei auftretenden Herausforderungen und Einschränkungen. Insbesondere stellen wir dabei auch einen Modellierungsansatz für Gasnetzwerke bestehend aus Rohren und algebraischen Komponenten vor. Abschließend testen wir in beiden Anwendungsfeldern die numerische Konvergenz anhand konkreter Beispiele mit verschiedenen Arten von stochastischer Modellierung. / This dissertation delves into the analysis of semi-explicit systems of stochastic differential equations (SDEs) coupled with stochastic partial differential equations (SPDEs) and algebraic equations (AEs) with possibly noise-driven operators. These systems play a crucial role in modeling real-world applications, such as electrical circuits and gas networks. The main contribution of this work is to provide a setting in which these semi-explicit systems have a unique solution even with stochastic influences in the algebraic constraints. We introduce a numerical approach for such systems and propose a new approach for extending convergence results of drift-implicit methods for SDEs to stochastic differential-algebraic equations (SDAEs). This is important, as many methods are well-developed for SDEs but generally not considered for SDAEs. Furthermore, we examine practical applications in circuit and gas network simulation, discussing the challenges and limitations encountered. In particular, we provide a modeling approach for gas networks consisting of pipes and algebraic components. To conclude, we test numerical convergence in both application settings on concrete examples with different types of stochastic modeling.

Page generated in 0.1394 seconds