• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 6
  • 1
  • Tagged with
  • 18
  • 18
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Ströme in ebenen Gebieten mit variabler Zusammenhangszahl

Menzel, Martin. Unknown Date (has links)
Universiẗat, Diss., 1997--Kaiserslautern.
12

Eigenlösungen der Maxwellgleichung auf S1 S3 und konforme Symmetrie Untersuchungen am U(2)-Programm /

Busse, Karsten. Unknown Date (has links)
Universiẗat, Diss., 1998--Halle.
13

Light Propagation and many particle effects in semiconductor nanostructures

Förstner, Jens. Unknown Date (has links) (PDF)
Techn. University, Diss., 2005--Berlin.
14

Evaluation numerischer Methoden zur Berechnung von Synchrotronstrahlung am ersten Bunchkompressor des Freie-Elektronen-Lasers FLASH

Paech, Andreas Robert. Unknown Date (has links)
Darmstadt, Techn. Universiẗat, Diss., 2008. / Dateien im PDF-Format.
15

Consistent discretization of Maxwell's equations on polyhedral grids

Euler, Timo. Unknown Date (has links) (PDF)
Darmstadt, Techn. University, Diss., 2007.
16

Zur Analyse des Schaltverhaltens dünner magnetischer Schichten in leitender Umgebung mit einem Beitrag zur Integration der Maxwellschen Gleichungen unter der Anwendung der mehrdimensionalen Fouriertransformation

Gelfert, Karl-Christoph 24 February 2021 (has links)
Die Maxwellschen Gleichungen werden bei der Analyse elektromagnetischer Felder an einem Raumpunkt in Abhängigkeit von den Feldquellen (z.B. Ladungen, Ströme) und beliebiger Anordnung von Gebieten mit Materie unterschiedlicher elektromagnetischer Eigenschaften , für eigene oder auch im Vergleich mit Beispielen anderer Autoren, analytisch oder numerisch iterativ gelöst. Ein eigenes Beispiel ist das Schaltverhalten der Magnetisierung dünner magnetischer (NiFe) Schichten zwischen leitenden (Cu) Schichten, wenn die umschaltenden Magnetfelder durch (n-Sekunden) Impulströme in darüberliegenden Streifenleitern (Cu) erzeugt werden. Verfahren hierzu werden angegeben ebenso wie FORTRAN-Quellprogramme zur näherungsweisen numerischen Lösung des Gesamtsystems der Maxwellschen Gleichungen. Solche Verfahren sind: - Einführung der Strecke, die das Licht im Vakuum in der Zeit t zurücklegt als vierte (imaginäre) Koordinate, - Umschreiben der Maxwellschen Gleichungen durch Verwendung der Tensoralgebra in Koordinatenschreibweise. Dadurch werden nur Skalare (Zahlen) miteinander verknüpft. Es treten keine komplizierten Verknüpfungen von Vektoren auf (Nabla,Rotor,Divergenz,Kreuzprodukt usw.). - Anwendung der vierdimensionalen Fouriertranformation. Ergebnis ist auch ein Vorschlag zur Dicke der leitenden Schichten (größer als die Skin-Eindringtiefe) über der dünnen magnetischen Schicht und die Anordnung der Ansteuerleitungen für nichtzerstörendes Lesen der in der magnetischen Schicht gespeicherten Information.:1. Einleitung 4 1.1. Zum Schaltverhalten ebener dünner magnetischer Schichten 4 1.2. Zur Integration der Maxwellschen Gleichungen 5 1.3. Zur in der Arbeit verwendeten Schreibweise 7 2. Physikalische Grundlagen zur Magnetisierungsdynamik dünner magnetischer Schichten (DMS) 11 2.1. Magnetisierungsänderung in DMS 11 2.1.1. Wandverschiebungsprozesse 11 2.1.2. Kohärente Spin-Rotation (KSR) 12 2.1.3. Nichtkohärente Spin-Rotation (NKSR) 13 2.2. Ummagnetisierung von DMS durch äußere Felder 15 2.2.1. DMS im Eindomänen (ED) –Zustand 15 2.2.1.1. Quasistatische Magnetisierungsänderung 15 2.2.1.2. Dynamisches Verhalten der Magnetisierungsänderung unter dem Einfluß von in der DMS homogenen Feldern 25 2.2.1.2.1. Die Bewegungsgleichung 25 2.2.1.2.2. Näherung für geringe Energiedichte 29 2.2.1.2.3. Viskose-Fluß-Approximation 34 2.2.1.2.4. Näherungslösung nach der nichtlinearen Schwingungstheorie 40 2.3. Zusammenfassung 42 3. Vorbemerkungen zur Analyse der Magnetisierungsdynamik bei DMS in leitender Umgebung 43 4. Ein Beitrag zur Lösung der Maxwellschen Gleichngen (MWG) 44 4.1. Maxwellsche Gleichungen (MWG) im dreidimensionalen Raum 45 4.2. Formulierung der MWG im vierdimensionalen Raum 47 4.2.1. Bemerkung zu den Rand- und Stetigkeitsbedingungen bei der Integration der MWG 55 4.2.2. Die Greensche Funktion (Einflußfunktion) 59 4.3. Anwendung einer Funktionaltransformation 62 4.3.1. Mehrdimensionale Fouriertransformation 64 4.3.2. Vierdimensionale Fouriertransformation der MWG 70 4.3.2.1. Fundamentallösungen, Eindeutigkeit 72 4.3.2.2. Die Helmholtzgleichung und das Prinzip der Grenzabsorption 75 4.3.2.3. Anmerkung zu den Resolventen der Fouriertransformierten Elektromagnetischer Felder 79 4.3.2.4. Lösungsbeispiele 86 4.3.2.4.1. Lösungen der Wellengleichung 86 4.3.2.4.2. Ableitungen verallgemeinerter Funktionen und Greensche Formel 89 4.3.2.4.3. Potential von Doppelleitern 92 4.3.2.4.4. Potential einer Punktladung bei inhomogenem Dielektrikum 93 5. Das DMS-Problem bei geschichteten Medien 97 5.1. Das Magnetfeld in der Schichtebene für eine DMS zwischen leitenden Ebenen 98 5.1.1. Das Magnetfeld in der Schichtebene bei symmetrischer Leiteranordnung 102 5.1.2. Die Einflußfunktion des DMS-Problems 105 5.2. Magnetisierungsdynamik bei inhomogenen Feldern 112 5.2.1. Statische Magnetisierungsänderung bei Entmagnetisierungs- und Streufeldern 114 5.2.1.1. Statisches Magnetfeld in der DMS-Ebene 116 5.2.1.2. Magnetisierungsverteilung unter dem Einfluß inhomogener Felder 120 5.2.1.3. Magnetisierungsdynamik bei inhomogenen Feldern unter Berücksichtigung der Bewegungsgleichung 131 6. Programmkurzbeschreibungen P 1 6.1. Allgemeine Programme P 1 6.1.1. Serviceprogramme P 1 6.1.1.1. Verarbeitung externer Matrizen MPACK P P 1 6.1.1.2. Niveauliniendruck CONPRT PPP1 1 6.1.2. Schnelle Fouriertransformation SFTF P 1 6.1.3. Vierdimensionale Fouriertransformation SMEFT4 P 3 6.2. Programme zum DMS-Problem P 4 6.2.1. Statische Magnetisierungsverteilung bei inhomogenen Feldern HDMS P 4 6.2.2. Sprungantwort des Magnetfeldes in der Schichtebene für einen Magnetisierungssprung. HDMGW Berechnung des Wirbelfeldes und Gesamtfeldes P 5 6.2.3. Magnetisierungsdynamik einer DMS zwischen leitenden Ebenen. EDMTES P 6 Berechnung des Magnetfeldes MDYN,MTENS 6.3. Programme zur genäherten Integration der Maxwellschen Gleichungen über die vierdimensionale schnelle Fourier-Transformation MAWGES P 8 6.3.1. Elektrisches Feld MAW (EPRT) P 10 6.3.2. Magnetisches Feld MAW (BHPRT) P 11 6.3.3. Stromdichteverteilung MAW (SDVPRT) P 12 7. Anhang A1.1 8. FORTRAN-Programm FP 1 9. Literaturverzeichnis L 1
17

Stability of finite element solutions to Maxwell's equations in frequency domain

Schwarzbach, Christoph 12 October 2009 (has links) (PDF)
Eine Standardformulierung der Randwertaufgabe für die Beschreibung zeitharmonischer elektromagnetischer Phänomene hat die Vektor-Helmholtzgleichung für das elektrische Feld zur Grundlage. Bei niedrigen Frequenzen führt der große Nullraum des Rotationsoperators zu einem instabilen Lösungsverhalten. Wird die Randwertaufgabe zum Beispiel mit Hilfe der Methode der Finiten Elemente in ein lineares Gleichungssystem überführt, äußert sich die Instabilität in einer schlechten Konditionszahl ihrer Koeffizientenmatrix. Eine stabilere Formulierung wird durch die explizite Berücksichtigung der Kontinuitätsgleichung erreicht. Zur numerischen Lösung der Randwertaufgaben wurde eine Finite-Elemente-Software erstellt. Sie berücksichtigt unter anderem unstrukturierte Gitter, räumlich variable, anisotrope Materialparameter sowie die Erweiterung der Maxwell-Gleichungen durch Perfectly Matched Layers. Die Software wurde anhand von Anwendungen in der marinen Geophysik erfolgreich getestet. Insbesondere demonstriert die Einbeziehung von Seebodentopographie in Form einer stetigen Oberflächentriangulierung die geometrische Flexibilität der Software. / The physics of time-harmonic electromagnetic phenomena can be mathematically described by boundary value problems. A standard approach is based on the vector Helmholtz equation in terms of the electric field. The curl operator involved has a large, non-trivial kernel which leads to an instable solution behaviour at low frequencies. If the boundary value problem is solved approximately using, e. g., the finite element method, the instability expresses itself by a badly conditioned coefficient matrix of the ensuing system of linear equations. A stable formulation is obtained by taking the continuity equation explicitly into account. In order to solve the boundary value problem numerically a finite element software package has been implemented. Its features comprise, amongst others, the treatment of unstructured meshes and piecewise polynomial, anisotropic constitutive parameters as well as the extension of Maxwell’s equations to the Perfectly Matched Layer. Successful application of the software is demonstrated with examples from marine geophysics. In particular, the incorporation of seafloor topography by a continuous surface triangulation illustrates the geometric flexibility of the software.
18

Stability of finite element solutions to Maxwell's equations in frequency domain

Schwarzbach, Christoph 10 August 2009 (has links)
Eine Standardformulierung der Randwertaufgabe für die Beschreibung zeitharmonischer elektromagnetischer Phänomene hat die Vektor-Helmholtzgleichung für das elektrische Feld zur Grundlage. Bei niedrigen Frequenzen führt der große Nullraum des Rotationsoperators zu einem instabilen Lösungsverhalten. Wird die Randwertaufgabe zum Beispiel mit Hilfe der Methode der Finiten Elemente in ein lineares Gleichungssystem überführt, äußert sich die Instabilität in einer schlechten Konditionszahl ihrer Koeffizientenmatrix. Eine stabilere Formulierung wird durch die explizite Berücksichtigung der Kontinuitätsgleichung erreicht. Zur numerischen Lösung der Randwertaufgaben wurde eine Finite-Elemente-Software erstellt. Sie berücksichtigt unter anderem unstrukturierte Gitter, räumlich variable, anisotrope Materialparameter sowie die Erweiterung der Maxwell-Gleichungen durch Perfectly Matched Layers. Die Software wurde anhand von Anwendungen in der marinen Geophysik erfolgreich getestet. Insbesondere demonstriert die Einbeziehung von Seebodentopographie in Form einer stetigen Oberflächentriangulierung die geometrische Flexibilität der Software. / The physics of time-harmonic electromagnetic phenomena can be mathematically described by boundary value problems. A standard approach is based on the vector Helmholtz equation in terms of the electric field. The curl operator involved has a large, non-trivial kernel which leads to an instable solution behaviour at low frequencies. If the boundary value problem is solved approximately using, e. g., the finite element method, the instability expresses itself by a badly conditioned coefficient matrix of the ensuing system of linear equations. A stable formulation is obtained by taking the continuity equation explicitly into account. In order to solve the boundary value problem numerically a finite element software package has been implemented. Its features comprise, amongst others, the treatment of unstructured meshes and piecewise polynomial, anisotropic constitutive parameters as well as the extension of Maxwell’s equations to the Perfectly Matched Layer. Successful application of the software is demonstrated with examples from marine geophysics. In particular, the incorporation of seafloor topography by a continuous surface triangulation illustrates the geometric flexibility of the software.

Page generated in 0.0883 seconds