411 |
IEEE 802.11/802.16 無線網狀網路中以最佳化強化競爭方式改善MAC機制的研究 / Maxminimal Contention-Enhancement to Improve MAC for IEEE 802.11/802.16 Wireless Mesh Network王乃昕, Wang, Nai Hsi Unknown Date (has links)
IEEE 802.11/802.16無線網路的MAC機制為儘可能爭取傳輸機會,此機制於壅塞的網狀網路環境中將造成傳輸速率過高及非必要封包碰撞的問題,進而嚴重降低網路傳輸效能。 / 本篇論文的目的旨在改善無線網狀網路環境中,因IEEE 802.11/ 802.16本身的MAC機制所導致的效能低落問題。我們利用賽局理論中零和賽局以強化競爭方式並計算及應用合理傳輸機會(Transmission Opportunities)及傳輸時機(Transmission Timing),再依此將傳輸速率調降至合理的數值以降低無效封包的傳輸率。同時,此傳輸機會及傳輸時機將作為路徑選擇的重要依據。末了,我們利用網路模擬器NS2 (Network Simulator ver. 2)驗證及評估本論文所提出之方法的效能。 / The MAC mechanism of IEEE 802.11 and 802.16 competes as much transmission opportunities as possible. In a congested wireless mesh network, this greedy competition will result in inappropriate data rates and unintentional packet collision problems, and thus reduce network performance seriously. / The objective of this research is aimed to solve these two problems to enhance the performance of wireless mesh networks. We propose a zero-sum-game based contention-enhancement in MAC mechanism to estimate rational transmission opportunities and transmission timing dynamically. These estimations will then be used in reducing unsuitable packet data rates and selecting better routing paths. At last, we use NS2 (Network Simulator ver.2) to evaluate the system performance of our proposed methods.
|
412 |
Two-Dimensional Anisotropic Cartesian Mesh Adaptation for the Compressible Euler EquationsKeats, William A. January 2004 (has links)
Simulating transient compressible flows involving shock waves presents challenges to the CFD practitioner in terms of the mesh quality required to resolve discontinuities and prevent smearing. This document discusses a novel two-dimensional Cartesian anisotropic mesh adaptation technique implemented for transient compressible flow. This technique, originally developed for laminar incompressible flow, is efficient because it refines and coarsens cells using criteria that consider the solution in each of the cardinal directions separately. In this document the method will be applied to compressible flow. The procedure shows promise in its ability to deliver good quality solutions while achieving computational savings. Transient shock wave diffraction over a backward step and shock reflection over a forward step are considered as test cases because they demonstrate that the quality of the solution can be maintained as the mesh is refined and coarsened in time. The data structure is explained in relation to the computational mesh, and the object-oriented design and implementation of the code is presented. Refinement and coarsening algorithms are outlined. Computational savings over uniform and isotropic mesh approaches are shown to be significant.
|
413 |
Achieving Fairness in 802.11-Based Multi-channel Wireless Mesh NetworksLee, Ann January 2006 (has links)
Multi-hop wireless networks based on 802. 11 are being used more widely as an alternative technology for last-mile broadband Internet access. Their benefits include ease of deployment and lower cost. Such networks are not without problems. Current research on such networks aims at a number of challenges, including overcoming capacity limitation and poor fairness. <br /><br /> The focus of our research is for achieving fairness in multi-channel multi-hop wireless networks. First, we review the literature for different methods for representing link-contention areas, and the existing single-channel fairness computational model. Second, we generalize the fairness constraints applied to each link-contention area, defined in the existing single-channel fairness reference model, to multi-channel models. Third, by adopting the concepts of link-usage matrix and medium-usage matrix to represent network topology and flow status, and using Collision Domain theory and Clique Graph theory to represent link-contention area, we develop a computational model to compute optimal MAC-layer bandwidth allocated to each flow in a multi-channel multi-hop WMN. We simulate various network configurations to evaluate the performance of the fairness algorithm based on the above computational model in different scenarios. We have found that in the multi-channel environment, our extension to the Collision Domain model generally provides a more accurate estimation of network capacity. Based on this model, we have extended the source-rate-limiting mechanism, which limits the flow rate to its fair share computed by the computational model. Experimental results that validate these findings are presented in this thesis.
|
414 |
A mesh transparent numerical method for large-eddy simulation of compressible turbulent flowsTristanto, Indi Himawan January 2004 (has links)
A Large Eddy-Simulation code, based on a mesh transparent algorithm, for hybrid unstructured meshes is presented to deal with complex geometries that are often found in engineering flow problems. While tetrahedral elements are very effective in dealing with complex geometry, excessive numerical diffusion often affects results. Thus, prismatic or hexahedral elements are preferable in regions where turbulence structures are important. A second order reconstruction methodology is used since an investigation of a higher order method based upon Lele's compact scheme has shown this to be impractical on general unstructured meshes. The convective fluxes are treated with the Roe scheme that has been modified by introducing a variable scaling to the dissipation matrix to obtain a nearly second order accurate centred scheme in statistically smooth flow, whilst retaining the high resolution TVD behaviour across a shock discontinuity. The code has been parallelised using MPI to ensure portability. The base numerical scheme has been validated for steady flow computations over complex geometries using inviscid and RANS forms of the governing equations. The extension of the numerical scheme to unsteady turbulent flows and the complete LES code have been validated for the interaction of a shock with a laminar mixing layer, a Mach 0.9 turbulent round jet and a fully developed turbulent pipe flow. The mixing layer and round jet computations indicate that, for similar mesh resolution of the shear layer, the present code exhibits results comparable to previously published work using a higher order scheme on a structured mesh. The unstructured meshes have a significantly smaller total number of nodes since tetrahedral elements are used to fill to the far field region. The pipe flow results show that the present code is capable of producing the correct flow features. Finally, the code has been applied to the LES computation of the impingement of a highly under-expanded jet that produces plate shock oscillation. Comparison with other workers' experiments indicates good qualitative agreement for the major features of the flow. However, in this preliminary computation the computed frequency is somewhat lower than that of experimental measurements.
|
415 |
Mathematical modelling of shallow water flows with application to Moreton Bay, BrisbaneBailey, Clare L. January 2010 (has links)
A finite volume, shock-capturing scheme is used to solve the shallow water equations on unstructured triangular meshes. The conditions are characterised by: slow flow velocities (up to 1m/s), long time scale (around 10 days), and large domains (50-100km across). Systematic verification is carried out by comparing numerical with analytical results, and by comparing parameter variation in the numerical scheme with perturbation analysis, and good agreement is found. It is the first time a shock-capturing scheme has been applied to slow flows in Moreton Bay. The scheme is used to simulate transport of a pollutant in Moreton Bay, to the east of the city of Brisbane, Australia. Tidal effects are simulated using a sinusoidal time-dependent boundary condition. An advection equation is solved to model the path of a contaminant that is released in the bay, and the effect of tide and wind on the contaminant is studied. Calibration is done by comparing numerical results with measurements made at a study site in Moreton Bay. It is found that variation in the wind speed and bed friction coefficients changes the solution in the way predicted by the asymptotics. These results vary according to the shape of the bathymetry of the domain: in shallower areas, flow is more subject to shear and hence changes in wind speed or bed friction had a greater effect in adding energy to the system. The results also show that the time-dependent boundary condition reproduces the tidal effects that are found on the Queensland coast, i.e. semi-diurnal with amplitude of about 1 metre, to a reasonable degree. It is also found that the simulated path of a pollutant agrees with field measurements. The computer model means different wind speeds and directions can be tested which allows management decisions to be made about which conditions have the least damaging effect on the area.
|
416 |
A new continuum based non-linear finite element formulation for modeling of dynamic response of deep water riser behaviorHosseini Kordkheili, Seyed January 2009 (has links)
The principal objective of this investigation is to develop a nonlinear continuum based finite element formulation to examine dynamic response of flexible riser structures with large displacement and large rotation. Updated Lagrangian incremental approach together with the 2nd Piola-Kirchhoff stress tensor and the Green-Lagrange strain tensor is employed to derive the nonlinear finite element formulation. The 2nd Piola-Kirchhoff stress and the Green-Lagrange strain tensors are energy conjugates. These two Lagrangian tensors are not affected by rigid body rotations. Thus, they are used to describe the equilibrium equation of the body independent of rigid rotations. While the current configuration in Updated Lagrangian incremental approach is unknown, the resulting equation becomes strongly nonlinear and has to be modified to a linearized form. The main contribution of this work is to obtain a modified linearization method during development of incremental Updated Lagrangian formulation for large displacement and large rotation analysis of riser structures. For this purpose, the Green-Lagrange strain and the 2nd Piola-Kirchhoff stress tensors are decomposed into two second-order six termed functions of through-thethickness parameters. This decomposition makes it possible to explicitly account for the nonlinearities in the direction along the riser thickness, as well. It is noted that using this linearization scheme avoids inaccuracies normally associated with other linearization schemes. The effects of buoyancy force, riser-seabed interaction as well as steady-state current loading are considered in the finite element solution for riser structure response. An efficient riser problem fluid-solid interaction Algorithm is also developed to maintain the quality of the mesh in the vicinity of the riser surface during riser and fluid mesh movements. To avoid distortions in the fluid mesh two different approaches are proposed to modify fluid mesh movement governing elasticity equation matrices values; 1) taking the element volume into account 2) taking both element volume and distance between riser centre and element centre into account. The formulation has been implemented in a nonlinear finite element code and the results are compared with those obtained from other schemes reported in the literature.
|
417 |
Channel assignment and routing in cooperative and competitive wireless mesh networksShah, Ibrar Ali January 2012 (has links)
In this thesis, the channel assignment and routing problems have been investigated for both cooperative and competitive Wireless Mesh networks (WMNs). A dynamic and distributed channel assignment scheme has been proposed which generates the network topologies ensuring less interference and better connectivity. The proposed channel assignment scheme is capable of detecting the node failures and mobility in an efficient manner. The channel monitoring module precisely records the quality of bi-directional links in terms of link delays. In addition, a Quality of Service based Multi-Radio Ad-hoc On Demand Distance Vector (QMR-AODV) routing protocol has been devised. QMR-AODV is multi-radio compatible and provides delay guarantees on end-to-end paths. The inherited problem of AODV’s network wide flooding has been solved by selectively forwarding the routing queries on specified interfaces. The QoS based delay routing metric, combined with the selective route request forwarding, reduces the routing overhead from 24% up to 36% and produces 40.4% to 55.89% less network delays for traffic profiles of 10 to 60 flows, respectively. A distributed channel assignment scheme has been proposed for competitive WMNs, where the problem has been investigated by applying the concepts from non-cooperative bargaining Game Theory in two stages. In the first stage of the game, individual nodes of the non-cooperative setup is considered as the unit of analysis, where sufficient and necessary conditions for the existence of Nash Equilibrium (NE) and Negotiation-Proof Nash Equilibrium (N-PNE) have been derived. A distributed algorithm has been presented with perfect information available to the nodes of the network. In the presence of perfect information, each node has the knowledge of interference experience by the channels in its collision domain. The game converges to N-PNE in finite time and the average fairness achieved by all the nodes is greater than 0.79 (79%) as measured through Jain Fairness Index. Since N-PNE and NE are not always a system optimal solutions when considered from the end-nodes prospective, the model is further extended to incorporate non-cooperative end-users bargaining between two end user’s Mesh Access Points (MAPs), where an increase of 10% to 27% in end-to-end throughput is achieved. Furthermore, a non-cooperative game theoretical model is proposed for end-users flow routing in a multi-radio multi-channel WMNs. The end user nodes are selfish and compete for the channel resources across the WMNs backbone, aiming to maximize their own benefit without taking care for the overall system optimization. The end-to-end throughputs achieved by the flows of an end node and interference experienced across the WMNs backbone are considered as the performance parameters in the utility function. Theoretical foundation has been drawn based on the concepts from the Game Theory and necessary conditions for the existence of NE have been extensively derived. A distributed algorithm running on each end node with imperfect information has been implemented to assess the usefulness of the proposed mechanism. The analytical results have proven that a pure strategy Nash Equilibrium exists with the proposed necessary conditions in a game of imperfect information. Based on a distributed algorithm, the game converges to a stable state in finite time. The proposed game theoretical model provides a more reasonable solution with a standard deviation of 2.19Mbps as compared to 3.74Mbps of the random flow routing. Finally, the Price of Anarchy (PoA) of the system is close to one which shows the efficiency of the proposed scheme.
|
418 |
High temperature durability of metals for use in a particle heating receiver for concentrated solar powerKnott, Ryan Christopher 12 January 2015 (has links)
An experimental investigation is presented on a novel High Temperature Falling Particle Receiver for Concentrated Solar Power (CSP) to quantify the extent of erosion of the receiver structural materials by the flowing particulate matter. The current receiver design uses a series of metal wire mesh screens to slow down the particulate flow through the receiver in order to increase their residence time thereby achieving the desired temperature rise within the receiver without the need for particulate recirculation. The solid particulates are gravity fed through the receiver where they absorb the incident thermal energy before flowing to a high temperature storage bin upstream of a heat exchanger where the heat stored in the particulate material is transferred to the working fluid for the power cycle. To assess the effective life of the receiver, this experimental investigation is undertaken. This thesis includes the development of an apparatus to test wire meshes under high temperature and particle abrasion conditions, and the presentation and analysis of these results.
|
419 |
Adaptive Mesh Refinement and Simulations of Unsteady Delta-Wing AerodynamicsLe Moigne, Yann January 2004 (has links)
This thesis deals with Computational Fluid Dynamics (CFD)simulations of the flow around delta wings at high angles ofattack. These triangular wings, mainly used in militaryaircraft designs, experience the formation of two vortices ontheir lee-side at large angles of attack. The simulation ofthis vortical flow by solving the Navier-Stokes equations isthe subject of this thesis. The purpose of the work is toimprove the understanding of this flow and contribute to thedesign of such a wing by developing methods that enable moreaccurate and efficient CFD simulations. Simulations of the formation, burst and disappearance of thevortices while the angle of attack is changing are presented.The structured flow solver NSMB has been used to get thetime-dependent solutions of the flow. Both viscous and inviscidresults of a 70°-swept delta wing pitching in anoscillatory motion are reported. The creation of the dynamiclift and the hysteresis observed in the history of theaerodynamic forces are well reproduced. The second part of the thesis is focusing on automatic meshrefinement and its influence on simulations of the delta wingleading-edge vortices. All the simulations to assess the gridquality are inviscid computations performed with theunstructured flow solver EDGE. A first study reports on theeffects of refining thewake of the delta wing. A70°-swept delta wing at a Mach number of 0.2 and an angleof attack of 27° where vortex breakdown is present abovethe wing, is used as testcase. The results show a strongdependence on the refinement, particularly the vortex breakdownposition, which leads to the conclusion that the wake should berefined at least partly. Using this information, a grid for thewing in the wind tunnel is created in order to assess theinfluence of the tunnel walls. Three sensors for automatic meshrefinement of vortical flows are presented. Two are based onflow variables (production of entropy and ratio of totalpressures) while the third one requires an eigenvalue analysisof the tensor of the velocity gradients in order to capture theposition of the vortices in the flow. These three vortexsensors are successfully used for the simulation of the same70° delta wing at an angle of attack of 20°. Acomparison of the sensors reveals the more local property ofthe third one based on the eigenvalue analysis. This lattertechnique is applied to the simulation of the wake of a deltawing at an angle of attack of 20°. The simulations on ahighly refined mesh show that the vortex sheet shed from thetrailing-edge rolls up into a vortex that interacts with theleading-edge vortex. Finally the vortex-detection technique isused to refine the grid around a Saab Aerosystems UnmannedCombat Air Vehicle (UCAV) configuration and its flight dynamicscharacteristics are investigated. Key words:delta wing, high angle of attack, vortex,pitching, mesh refinement, UCAV, vortex sensor, tensor ofvelocity gradients.
|
420 |
Adaptive mesh modelling of the thermally driven annulusMaddison, James R. January 2011 (has links)
Numerical simulations of atmospheric and oceanic flows are fundamentally limited by a lack of model resolution. This thesis describes the application of unstructured mesh finite element methods to geophysical fluid dynamics simulations. These methods permit the mesh resolution to be concentrated in regions of relatively increased dynamical importance. Dynamic mesh adaptivity can further be used to maintain an optimised mesh even as the flow develops. Hence unstructured dynamic mesh adaptive methods have the potential to enable efficient simulations of high Reynolds number flows in complex geometries. In this thesis, the thermally driven rotating annulus is used to test these numerical methods. This system is a classic laboratory scale analogue for large scale geophysical flows. The thermally driven rotating annulus has a long history of experimental and numerical research, and hence it is ideally suited for the validation of new numerical methods. For geophysical systems there is a leading order balance between the Coriolis and buoyancy accelerations and the pressure gradient acceleration: geostrophic and hydrostatic balance. It is essential that any numerical model for these systems is able to represent these balances accurately. In this thesis a balanced pressure decomposition method is described, whereby the pressure is decomposed into a ``balanced'' component associated with the Coriolis and buoyancy accelerations, and a ``residual'' component associated with other forcings and that enforces incompressibility. It is demonstrated that this method can be used to enable a more accurate representation of geostrophic and hydrostatic balance in finite element modelling. Furthermore, when applying dynamic mesh adaptivity, there is a further potential for imbalance injection by the mesh optimisation procedure. This issue is tested in the context of shallow-water ocean modelling. For the linearised system on an $f$-plane, and with a steady balance permitting numerical discretisation, an interpolant is formulated that guarantees that a steady and balanced state remains steady and in balance after interpolation onto an arbitrary target mesh. The application of unstructured dynamic mesh adaptive methods to the thermally driven rotating annulus is presented. Fixed structured mesh finite element simulations are conducted, and compared against a finite difference model and against experiment. Further dynamic mesh adaptive simulations are then conducted, and compared against the structured mesh simulations. These tests are used to identify weaknesses in the application of dynamic mesh adaptivity to geophysical systems. The simulations are extended to a more challenging system: the thermally driven rotating annulus at high Taylor number and with sloping base and lid topography. Analysis of the high Taylor number simulations reveals a direct energy transfer from the eddies to the mean flow, confirming the results of previous experimental work.
|
Page generated in 0.0301 seconds