• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 7
  • 5
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 32
  • 32
  • 17
  • 16
  • 9
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An analytical and experimental investigation for an interstitial insulation technology

Kim, Dong Keun 15 May 2009 (has links)
An insulation technique has been developed which contains a single or combination of materials to help minimize heat loss in actual industrial applications. For the petroleum industry, insulation for deep sea piping is one of the greatest challenges which would prevent the industry from meeting the high demand for oil through exploration into deeper ocean environments. At current seafloor depths (5,000~10,000ft), pipeline insulation is essential in preventing pipeline blockage resulting from the solidification of paraffin waxes and / or hydrate formation which exist in crude oil. To maintain crude oil temperatures above the paraffin solidification point (68°C or 155°F), new and better insulation techniques are essential to minimize pipeline heat loss and maintain crude oil temperatures. Therefore, the objective of this investigation was to determine whether or not the thermal resistance of a new insulation concept, which involves IIT (Interstitial Insulation Technology) with screen wire, was greater than existing readily available commercial products through analytical modeling and experimentation. The model takes into account both conforming and nonconforming interfaces at the wire screen contacts within the interstitial space between coaxial pipes. In addition, confirmation was needed to determine whether or not laboratory testing of simulated coupons translate to thermal performance for a prototype pipe segment that fabricated with two layers of low conductivity wire-screen (stainless steel) as the interstitial insulation material. Both the inner and outer surface temperatures of the coaxial pipes were measured in order to evaluate the effective thermal conductivity and thermal diffusivity of the insulation concept. The predicted results from the model compared very favorably with the experimental results, confirming both the trends and magnitudes of the experimental data. In other words, whether the reduction in heat transfer observed for small laboratory samples was realistic for application to a pipeline configuration. This effort involved both analytical modeling for all thermal resistances and experimental test runs for validation of the analytical model. Finally, it was a goal of this investigation to develop a simplified model for a multilayer composite structure which will include radiation heat transfer exchange among the layers that constitute the insulation. With the developed model, feasibility and performance characteristics of the insulation concept were predicted. The thermal predictions have demonstrated the thermal competitiveness of the interstitial insulation technology.
2

Evaluation of the Thermal Performance for a Wire Mesh/Hollow Glass Microsphere Composite Structure as a Conduction Barrier

Mckenna, Sean 15 January 2010 (has links)
An experimental investigation exploring the use of wire mesh/hollow glass microsphere combination for use as thermal insulation was conducted with the aim to conclude whether or not it represents a superior insulation technology to those on the market. Three primary variables, including number of wire mesh layers, filler material, and temperature dependence were studied using an apparatus that was part of L.I.C.H.E.N (LabVIEW Integrated Conduction Heat Experiment Network), a setup whose basic components allow three vertically stacked samples to be thermally and mechanically controlled. Knowing the temperature profile in the upper and lower samples allows for determination of thermal conductivity of the middle material through the use of Fourier?s law. The numbers of layers investigated were two, four, six, and eight, with each separated by a metallic liner. The filler materials included air, s15, s35 and s60HS 3MTM hollow glass microspheres. The experiments were conducted at four temperatures of 300, 330, 366, and 400K with an interface pressure of 20 Psi. The experimental results indicated the ?number of layers? used was the primary factor in determining the effective thermal conductivity value. The addition of hollow glass microspheres as filler material resulted in statistically insignificant changes in effective thermal conductivity. Increasing the number of wire mesh layers resulted in a corresponding increase in effective thermal conductivity of the insulation. Changes in temperature had little to no effect on thermal conductivity. The effective thermal conductivity values for the proposed insulation structure ranged from 0.22 to 0.65 W/m-K, the lowest of which came from the two layer case having air as filler material. The uncertainties associated with the experimental results fell between 10 to 20 percent in all but a few cases. In the best performing cases, when compared with existing insulation technologies, thermal conductivity was approximately 3 to 10 times higher than these methods of insulation. Thus, the proposed insulation scheme with hollow glass-sphere filler material does not represent superior technology, and would be deemed uncompetitive with those readily available in the insulation market.
3

Measurements in Horizontal Air-water Pipe Flows Using Wire-mesh Sensors

Lessard, Etienne 10 April 2014 (has links)
This thesis is concerned with the performance and measurement uncertainty of wire-mesh sensors in different air-water flow regimes in horizontal pipes. It also presents measurements of void fraction and interfacial velocity in such flows. It was found that the interfacial velocity measurements of the wire-mesh sensors were in good agreement with those taken with a high-speed camera and estimates of the uncertainties of these measurements are presented. Drift-flux models were fitted to the measurements and it was found that the parameters of these models were not only sensitive to the flow regime, but also to the liquid superficial velocity.
4

Measurements in Horizontal Air-water Pipe Flows Using Wire-mesh Sensors

Lessard, Etienne January 2014 (has links)
This thesis is concerned with the performance and measurement uncertainty of wire-mesh sensors in different air-water flow regimes in horizontal pipes. It also presents measurements of void fraction and interfacial velocity in such flows. It was found that the interfacial velocity measurements of the wire-mesh sensors were in good agreement with those taken with a high-speed camera and estimates of the uncertainties of these measurements are presented. Drift-flux models were fitted to the measurements and it was found that the parameters of these models were not only sensitive to the flow regime, but also to the liquid superficial velocity.
5

The Influence of Development and Fan/Screen Interaction on Screen-Generated Total Pressure Distortion Profiles

Bailey, Justin Mark 03 February 2014 (has links)
The rising interest in fan performance in the presence of total pressure distortion, a topic of fundamental interest for integrated airframe/engine architectures, has led to increased research in ground based testing environments. Included in these studies is the generation of simulated total pressure distortion profiles using wire mesh screens. Although the inlet duct development of total pressure distortion patterns has been studied in a historical context when distortion effects on engine performance were first of interest, these were typically simplified experimental studies for low-speed flows. To aid in the understanding of total pressure distortion development approaching a transonic fan face, a series of experiments were conducted to detail the development of such a profile downstream of the screen plane in the absence and presence of fan effects. Presented is an extensive experimental set to detail (1) the evolution of a screen-generated total pressure distortion profile as it develops in a constant diameter inlet duct and (2) the effect that a single stage transonic fan has on the distortion development. Included is a detailed analysis of the distortion profile characteristics for increasing development length, and the behavioral changes of the profile when fan blockage is present near the screen plane. Recommendations are made regarding the placement of total pressure distortion screens relative to the fan face, and insights are given into the expected profile evolution. This work is a contributing part of an ongoing systematic investigation of fan performance when subjected to screen-generated total pressure inlet distortion. / Master of Science
6

Estudo topológico de escoamento trifásico óleo-água-ar através de sensor de impedância de resposta rápida do tipo \"wire-mesh\" / Topologic study of three-phase pipe flow by means of fast-response wire-mesh impedance sensor

Velasco Peña, Hugo Fernando 27 February 2015 (has links)
A ocorrência frequente de escoamentos multifásicos em tubulações tem motivado um grande interesse acadêmico nas últimas décadas. O caso particular de escoamentos líquidolíquido é geralmente encontrado na indústria do petróleo, onde uma série de aplicações envolve escoamentos óleo-água, tais como a produção de petróleo e seu transporte. No entanto, ele não tem recebido a mesma atenção quando comparado com escoamentos gás-líquido. Ainda não existe uma explicação física razoável para um número significativo de fenômenos observados em escoamento óleo-água, como o fenômeno de redução de atrito, observado em escoamento disperso, e a estrutura interfacial ondulada em escoamento estratificado. Os escoamentos trifásicos têm sido ainda menos estudados. Há técnicas de medição, desenvolvidas para escoamento gás-líquido, que supostamente são adaptáveis aos escoamentos líquido-líquido, mas várias delas ainda precisam de validação adequada. O sensor wire-mesh, um método híbrido baseado na medição de resistência ou capacitância, que combina medição local intrusiva da fração de fase e imagens tomográficas transversais, oferece uma boa resolução espacial e alta resolução temporal em comparação com outras técnicas atuais. Porém, a literatura existente em aplicações do sensor wire-mesh cobre quase apenas o escoamento gás-líquido e, até agora, não é possível avaliar o limite de viscosidade do fluido para a sua aplicação. Neste contexto, este projeto propõe o estudo de aspectos importantes da fenomenologia de escoamentos líquido-líquido e líquido-líquido-gás com o auxílio da tecnologia wire-mesh. O principal objetivo prático é a validação da técnica wire-mesh como ferramenta de referência para o desenvolvimento de instrumentação para aplicações em campos petrolíferos, com especial atenção devotada ao efeito da viscosidade do óleo sobre a confiabilidade da medição e à extensão da tecnologia para lidar com escoamentos óleo-água-gás. / The frequent occurrence of multiphase flows in pipes has motivated a great research interest over the last decades. The particular case of liquid-liquid flow is commonly encountered in the petroleum industry, where a number of applications involve oil-water flow such as crude oil production and transportation. However, it has not received the same attention when compared to gas-liquid flow. There is no reasonable physical explanation for a significant number of phenomena observed in oil-water flow, as the drag reduction phenomenon observed in dispersed flow and the interfacial wavy structure of stratified flow. Much less has been investigated when it comes to three-phase flow. Several measurement techniques that are supposed to be adaptable to liquid-liquid flow have been proposed recently, but many of them still need proper validation. The wire-mesh sensor, a hybrid impedance-based method that combines intrusive local measurement of phase fraction and tomographic cross-sectional imaging, offers good spatial resolution and high temporal resolution in comparison with other current techniques. However, the existing literature on wire-mesh sensor applications covers almost only the gas-liquid flow and, so far, it is not possible to evaluate the fluid-viscosity limit for its application. In that context, this project proposes the study of important aspects of liquidliquid and liquid-liquid-gas flow phenomenology with the aid of the wire-mesh technology. The main goal is the validation of the wire-mesh technique as a reference tool for the development of instrumentation for oilfield application, with especial attention paid to the effect of oil viscosity on measurement reliability and the extension of the technology for dealing with oil-water-gas flow.
7

Estudo do fenômeno de redução de atrito em escoamento disperso óleo - água em tubulação horizontal / Investigation on drag reduction phenomenon in horizontal oil - water dispersed pipe flow

Rodriguez, Iara Hernandez 10 November 2009 (has links)
O interesse em escoamento bifásico líquido-líquido aumentou recentemente, em especial devido às grandes perdas de energia envolvidas no transporte de petróleo, onde comumente uma mistura bifásica óleo-água é deslocada ao longo de grandes distancias. Embora este tipo de escoamento seja comum na indústria, não existem tantos trabalhos na literatura quanto os relacionados ao escoamento gás-líquido. Alguns estudos sobre escoamentos óleo-água reportam uma redução de atrito em dispersões e emulsões em regime turbulento sem adição de qualquer tipo de substancia química, mas a física por trás do fenômeno ainda não é bem compreendida. Neste trabalho, foi estudado o padrão de escoamento disperso óleo-água em tubulação horizontal, visando a obtenção de novos dados experimentais e um melhor entendimento do fenômeno de redução de atrito. Uma série de parâmetros considerados importantes para a caracterização do escoamento foi investigada: queda de pressão, fração volumétrica e sub-padrões de escoamento disperso. Apresentam-se dados de distribuição das fases e fração volumétrica in situ, obtidos através de um moderno sensor intrusivo, do tipo wire-mesh, baseado em medidas de capacitância (permissividade). Câmera de alta velocidade e técnica das válvulas de fechamento rápido foram utilizadas para validar os sinais do sensor. Um modelo prospectivo simplificado foi desenvolvido como uma tentativa de explicar a ocorrência do fenômeno de redução de atrito no padrão disperso óleo-água estudado. O modelo sugere que a presença de uma fina película de água rente a parede hidrofílica/oleofóbica do tubo poderia explicar a diminuição no gradiente de pressão bifásico observada. / The interest in two-phase liquid-liquid flow has increased recently mainly due to the petroleum industry where oil and water are often produced and transported together for long distances and the significant frictional pressure gradient involved. Liquid-liquid flows are present in a wide range of industrial processes; however, they have not been studied as intensively as gas-liquid flows. Drag reduction phenomenon in oil-water flows without the addition of any drag reduction agent has been detected in previous works, but the physics behind the phenomenon is yet not well understood. The aim of the research was to study the dispersed oil-water flow pattern in a horizontal pipe in order to better understand the phenomenon and the obtaining of new experimental data of oil-water dispersed flows. Important issues related to oil-water pipe flow were investigated: pressure drop, volume fraction and flow patterns. Phase distribution and holdup data were obtained by a new wire-mesh sensor based on capacitance (permittivity) measurements. A high-speed video camera and the Quick-Closing-Valves technique were used to compare and validate the signals of the wire-mesh sensor. A simplified mathematical model was proposed to explain the drag reduction phenomenon in the oil-water dispersed flow studied. The model suggests that the presence of a thin water film between the homogenously dispersed flow and the pipe wall could explain the observed decreases of the two-phase pressure gradient.
8

Estudo do fenômeno de redução de atrito em escoamento disperso óleo - água em tubulação horizontal / Investigation on drag reduction phenomenon in horizontal oil - water dispersed pipe flow

Iara Hernandez Rodriguez 10 November 2009 (has links)
O interesse em escoamento bifásico líquido-líquido aumentou recentemente, em especial devido às grandes perdas de energia envolvidas no transporte de petróleo, onde comumente uma mistura bifásica óleo-água é deslocada ao longo de grandes distancias. Embora este tipo de escoamento seja comum na indústria, não existem tantos trabalhos na literatura quanto os relacionados ao escoamento gás-líquido. Alguns estudos sobre escoamentos óleo-água reportam uma redução de atrito em dispersões e emulsões em regime turbulento sem adição de qualquer tipo de substancia química, mas a física por trás do fenômeno ainda não é bem compreendida. Neste trabalho, foi estudado o padrão de escoamento disperso óleo-água em tubulação horizontal, visando a obtenção de novos dados experimentais e um melhor entendimento do fenômeno de redução de atrito. Uma série de parâmetros considerados importantes para a caracterização do escoamento foi investigada: queda de pressão, fração volumétrica e sub-padrões de escoamento disperso. Apresentam-se dados de distribuição das fases e fração volumétrica in situ, obtidos através de um moderno sensor intrusivo, do tipo wire-mesh, baseado em medidas de capacitância (permissividade). Câmera de alta velocidade e técnica das válvulas de fechamento rápido foram utilizadas para validar os sinais do sensor. Um modelo prospectivo simplificado foi desenvolvido como uma tentativa de explicar a ocorrência do fenômeno de redução de atrito no padrão disperso óleo-água estudado. O modelo sugere que a presença de uma fina película de água rente a parede hidrofílica/oleofóbica do tubo poderia explicar a diminuição no gradiente de pressão bifásico observada. / The interest in two-phase liquid-liquid flow has increased recently mainly due to the petroleum industry where oil and water are often produced and transported together for long distances and the significant frictional pressure gradient involved. Liquid-liquid flows are present in a wide range of industrial processes; however, they have not been studied as intensively as gas-liquid flows. Drag reduction phenomenon in oil-water flows without the addition of any drag reduction agent has been detected in previous works, but the physics behind the phenomenon is yet not well understood. The aim of the research was to study the dispersed oil-water flow pattern in a horizontal pipe in order to better understand the phenomenon and the obtaining of new experimental data of oil-water dispersed flows. Important issues related to oil-water pipe flow were investigated: pressure drop, volume fraction and flow patterns. Phase distribution and holdup data were obtained by a new wire-mesh sensor based on capacitance (permittivity) measurements. A high-speed video camera and the Quick-Closing-Valves technique were used to compare and validate the signals of the wire-mesh sensor. A simplified mathematical model was proposed to explain the drag reduction phenomenon in the oil-water dispersed flow studied. The model suggests that the presence of a thin water film between the homogenously dispersed flow and the pipe wall could explain the observed decreases of the two-phase pressure gradient.
9

Estudo topológico de escoamento trifásico óleo-água-ar através de sensor de impedância de resposta rápida do tipo \"wire-mesh\" / Topologic study of three-phase pipe flow by means of fast-response wire-mesh impedance sensor

Hugo Fernando Velasco Peña 27 February 2015 (has links)
A ocorrência frequente de escoamentos multifásicos em tubulações tem motivado um grande interesse acadêmico nas últimas décadas. O caso particular de escoamentos líquidolíquido é geralmente encontrado na indústria do petróleo, onde uma série de aplicações envolve escoamentos óleo-água, tais como a produção de petróleo e seu transporte. No entanto, ele não tem recebido a mesma atenção quando comparado com escoamentos gás-líquido. Ainda não existe uma explicação física razoável para um número significativo de fenômenos observados em escoamento óleo-água, como o fenômeno de redução de atrito, observado em escoamento disperso, e a estrutura interfacial ondulada em escoamento estratificado. Os escoamentos trifásicos têm sido ainda menos estudados. Há técnicas de medição, desenvolvidas para escoamento gás-líquido, que supostamente são adaptáveis aos escoamentos líquido-líquido, mas várias delas ainda precisam de validação adequada. O sensor wire-mesh, um método híbrido baseado na medição de resistência ou capacitância, que combina medição local intrusiva da fração de fase e imagens tomográficas transversais, oferece uma boa resolução espacial e alta resolução temporal em comparação com outras técnicas atuais. Porém, a literatura existente em aplicações do sensor wire-mesh cobre quase apenas o escoamento gás-líquido e, até agora, não é possível avaliar o limite de viscosidade do fluido para a sua aplicação. Neste contexto, este projeto propõe o estudo de aspectos importantes da fenomenologia de escoamentos líquido-líquido e líquido-líquido-gás com o auxílio da tecnologia wire-mesh. O principal objetivo prático é a validação da técnica wire-mesh como ferramenta de referência para o desenvolvimento de instrumentação para aplicações em campos petrolíferos, com especial atenção devotada ao efeito da viscosidade do óleo sobre a confiabilidade da medição e à extensão da tecnologia para lidar com escoamentos óleo-água-gás. / The frequent occurrence of multiphase flows in pipes has motivated a great research interest over the last decades. The particular case of liquid-liquid flow is commonly encountered in the petroleum industry, where a number of applications involve oil-water flow such as crude oil production and transportation. However, it has not received the same attention when compared to gas-liquid flow. There is no reasonable physical explanation for a significant number of phenomena observed in oil-water flow, as the drag reduction phenomenon observed in dispersed flow and the interfacial wavy structure of stratified flow. Much less has been investigated when it comes to three-phase flow. Several measurement techniques that are supposed to be adaptable to liquid-liquid flow have been proposed recently, but many of them still need proper validation. The wire-mesh sensor, a hybrid impedance-based method that combines intrusive local measurement of phase fraction and tomographic cross-sectional imaging, offers good spatial resolution and high temporal resolution in comparison with other current techniques. However, the existing literature on wire-mesh sensor applications covers almost only the gas-liquid flow and, so far, it is not possible to evaluate the fluid-viscosity limit for its application. In that context, this project proposes the study of important aspects of liquidliquid and liquid-liquid-gas flow phenomenology with the aid of the wire-mesh technology. The main goal is the validation of the wire-mesh technique as a reference tool for the development of instrumentation for oilfield application, with especial attention paid to the effect of oil viscosity on measurement reliability and the extension of the technology for dealing with oil-water-gas flow.
10

A study of gas lift on oil/water flow in vertical risers

Brini Ahmed, Salem Kalifa January 2014 (has links)
Gas lift is a means of enhancing oil recovery from hydrocarbon reservoirs. Gas injected at the production riser base reduces the gravity component of the pressure drop and thereby, increases the supply of oil from the reservoir. Also, gas injection at the base of a riser helps to mitigate slugging and thus, improving the performance of the topside facility. In order to improve the efficiency of the gas lifting technique, a good understanding of the characteristics of gas-liquid multiphase flow in vertical pipes is very important. In this study, experiments of gas/liquid (air/water) two-phase flows, liquid/liquid of oil/water two-phase flows and gas/liquid/liquid (air/oil/water) three-phase flows were conducted in a 10.5 m high 52 mm ID vertical riser. These experiments were performed at liquid and gas superficial velocities ranging from 0.25 to 2 m/s and ~0.1 to ~6.30 m/s, respectively. Dielectric oil and tap water were used as test fluids. Instruments such as Coriolis mass flow meter, single beam gamma densitometer and wire-mesh sensor (WMS) were employed for investigating the flow characteristics. For the experiments of gas/liquid (air/water) two-phase flow, flow patterns of Bubbly, slug, churn flow regimes and transition regions were identified under the experimental conditions. Also, for flow pattern identification and void fraction measurements, the capacitance WMS results are consistent with those obtained simultaneously by the gamma densitometer. Generally, the total pressure gradient along the vertical riser has shown a significant decrease as the injected gas superficial velocity increased. In addition, the rate of decrease in total pressure gradient at the lower injected gas superficial velocities was found to be higher than that for higher gas superficial velocities. The frictional pressure gradient was also found to increase as the injected gas superficial velocity increased. For oil-water experiments, mixture density and total pressure gradient across the riser were found to increase with increasing water cut (ranging between 0 - 100%) and/or mixture superficial velocity. Phase slip between the oil and water was calculated and found to be significant at lower throughputs of 0.25 and 0.5 m/s. The phase inversion point always takes place at a point of input water cut of 42% when the experiments started from pure oil to water, and at an input water cut of 45% when the experiment’s route started from water to pure oil. The phase inversion point was accompanied by a peak increase of pressure gradient, particularly at higher oil-water mixture superficial velocities of 1, 1.5 and 2 m/s. The effects of air injection rates on the fluid flow characteristics were studied by emphasizing the total pressure gradient behaviour and identifying the flow pattern by analysing the output signals from gamma and WMS in air/oil/water experiments. Generally, riser base gas injection does not affect the water cut at the phase inversion point. However, a slight shift forward for the identified phase inversion point was found at highest flow rates of injected gas where the flow patterns were indicated as churn to annular flow. In terms of pressure gradient, the gas lifting efficiency (lowering pressure gradient) shows greater improvement after the phase inversion point (higher water cuts) than before and also at the inversion point. Also, it was found that the measured mean void fraction reaches its lowest value at the phase inversion point. These void fraction results were found to be consistent with previously published results.

Page generated in 0.0635 seconds