• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 7
  • 5
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 32
  • 32
  • 17
  • 16
  • 9
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

High temperature durability of metals for use in a particle heating receiver for concentrated solar power

Knott, Ryan Christopher 12 January 2015 (has links)
An experimental investigation is presented on a novel High Temperature Falling Particle Receiver for Concentrated Solar Power (CSP) to quantify the extent of erosion of the receiver structural materials by the flowing particulate matter. The current receiver design uses a series of metal wire mesh screens to slow down the particulate flow through the receiver in order to increase their residence time thereby achieving the desired temperature rise within the receiver without the need for particulate recirculation. The solid particulates are gravity fed through the receiver where they absorb the incident thermal energy before flowing to a high temperature storage bin upstream of a heat exchanger where the heat stored in the particulate material is transferred to the working fluid for the power cycle. To assess the effective life of the receiver, this experimental investigation is undertaken. This thesis includes the development of an apparatus to test wire meshes under high temperature and particle abrasion conditions, and the presentation and analysis of these results.
12

Experimental evaluation of wire mesh for design as a bearing damper

Choudhry, Vivek Vaibhav 15 November 2004 (has links)
Wire mesh vibration dampers have been the subject of some very encouraging experiments at the Texas A&M Turbomachinery laboratories for the past several years and have emerged as an excellent replacement for squeeze film dampers. Their capability to provide damping for a wide range of temperatures (even cryogenic), fluid free operation and ability to perform even when soaked with lubricants makes them a suitable option as a bearing damper. Experiments were conducted to investigate the effect of design parameters like axial thickness and axial compression that influence the characteristics of wire mesh as a bearing damper. Two groups of wire mesh were tested to show that the stiffness and damping are directly proportional to the axial thickness, if all the other parameters are kept constant. Tests on four wire mesh donuts of different radial thickness showed that stiffness and damping vary inversely with radial thickness. Rigorous tests were also conducted to quantify the effects of axial compression, radial interference and displacement amplitude on stiffness and damping of the wire mesh. Another novel kind of mesh damper tested was comprised of two small segments instead of a whole donut. The results showed that wire mesh exhibited good damping characteristics even when used in small segments. Empirical expressions were developed using MathCADTM worksheets, and an existing ExcelTM design worksheet was modified to include these factors. The effect of frequency variation was also included to give a comprehensive design tool for wire mesh. A new design worksheet was developed that can predict rotordynamic coefficients for a wire mesh bearing damper having a different size as well as different installation and operational conditions.
13

High Temperature Gas to Liquid Metal Foam and Wire Mesh Heat Exchangers

Rezaey, Reza 26 November 2012 (has links)
Metal foams and wire meshes are open cell structures with low weight and density, high permeability and high thermal conductivity which make them attractive for a wide range of industrial applications involving fluid flow and heat transfer. In this study, the effect of natural convection, radiation and heat transfer enhancement of metal foams and wire meshes of 10 and 40 PPI (pores per inch) heat exchangers were examined and compared for different heat exchanger orientation, coolant flow rate and atmosphere temperature. Thermal spray coating processes were also used in development of a new class of high temperature stainless steel heat exchangers. Stainless steel wire mesh heat exchangers were prototyped by connecting the tube to the wire mesh using wire arc thermal spray coating. Thermal spray coating provided efficient connections between the wire mesh and the tubes’ outer surface, and has potential to replace expensive brazing or other metal connection techniques.
14

Experimental evaluation of wire mesh for design as a bearing damper

Choudhry, Vivek Vaibhav 15 November 2004 (has links)
Wire mesh vibration dampers have been the subject of some very encouraging experiments at the Texas A&M Turbomachinery laboratories for the past several years and have emerged as an excellent replacement for squeeze film dampers. Their capability to provide damping for a wide range of temperatures (even cryogenic), fluid free operation and ability to perform even when soaked with lubricants makes them a suitable option as a bearing damper. Experiments were conducted to investigate the effect of design parameters like axial thickness and axial compression that influence the characteristics of wire mesh as a bearing damper. Two groups of wire mesh were tested to show that the stiffness and damping are directly proportional to the axial thickness, if all the other parameters are kept constant. Tests on four wire mesh donuts of different radial thickness showed that stiffness and damping vary inversely with radial thickness. Rigorous tests were also conducted to quantify the effects of axial compression, radial interference and displacement amplitude on stiffness and damping of the wire mesh. Another novel kind of mesh damper tested was comprised of two small segments instead of a whole donut. The results showed that wire mesh exhibited good damping characteristics even when used in small segments. Empirical expressions were developed using MathCADTM worksheets, and an existing ExcelTM design worksheet was modified to include these factors. The effect of frequency variation was also included to give a comprehensive design tool for wire mesh. A new design worksheet was developed that can predict rotordynamic coefficients for a wire mesh bearing damper having a different size as well as different installation and operational conditions.
15

Thermohydraulische Modellierung der Kondensation von Dampf in einer unterkühlten Flüssigkeitsströmung

Gregor, Sabine, Beyer, Matthias, Prasser, Horst-Michael 31 March 2010 (has links) (PDF)
Nach einer kurzen technischen Beschreibung der Mehrzweck-Thermohydraulikversuchsanlage TOPFLOW und der verwendeten Messtechnik werden die theoretischen Grundlagen zur Modellierung der Kondensation von Dampf in einer Wasserströmung erläutert. Dabei gehen die Autoren besonders auf die Auswahl geeigneter Modelle zur Beschreibung des Wärmeübergangs und der Zwischenphasengrenzfläche im Druckbereich zwischen 10 und 65 bar detailliert ein. Außerdem werden verschiedene Drift-Flux-Modelle auf ihre Tauglichkeit anhand von experimentellen Daten geprüft. Da Veränderungen thermodynamischer und strömungstechnischer Parameter hauptsächlich in axialer Richtung stattfinden, wurden diese Modelle in einen eindimensionalen Code eingebettet, mit dem der Strömungsverlauf entlang einer vertikalen Rohrleitung mit einer Länge von 8 m und einem Nenndurchmesser von 200 mm berechnet werden kann. Anschließend werden Aufbau und Funktion dieses Programms vorgestellt. Nachfolgend vergleichen die Autoren experimentelle und berechnete Strömungsverläufe bei der Kondensation von Dampf sowohl in einer unterkühlten Wasserströmung als auch nahe der Siedetemperatur. Dabei wird der Einfluss wichtiger Randbedingungen, wie z.B. Druck oder Primärblasengröße, auf die Kondensationsintensität analysiert. Eine Einschätzung der Fehlerbanden für die experimentellen Daten, die verwendeten Gittersensoren und die numerische Simulation schließen den Bericht ab.
16

A study of gas lift on oil/water flow in vertical risers

Brini Ahmed, Salem Kalifa 01 1900 (has links)
Gas lift is a means of enhancing oil recovery from hydrocarbon reservoirs. Gas injected at the production riser base reduces the gravity component of the pressure drop and thereby, increases the supply of oil from the reservoir. Also, gas injection at the base of a riser helps to mitigate slugging and thus, improving the performance of the topside facility. In order to improve the efficiency of the gas lifting technique, a good understanding of the characteristics of gas-liquid multiphase flow in vertical pipes is very important. In this study, experiments of gas/liquid (air/water) two-phase flows, liquid/liquid of oil/water two-phase flows and gas/liquid/liquid (air/oil/water) three-phase flows were conducted in a 10.5 m high 52 mm ID vertical riser. These experiments were performed at liquid and gas superficial velocities ranging from 0.25 to 2 m/s and ~0.1 to ~6.30 m/s, respectively. Dielectric oil and tap water were used as test fluids. Instruments such as Coriolis mass flow meter, single beam gamma densitometer and wire-mesh sensor (WMS) were employed for investigating the flow characteristics. For the experiments of gas/liquid (air/water) two-phase flow, flow patterns of Bubbly, slug, churn flow regimes and transition regions were identified under the experimental conditions. Also, for flow pattern identification and void fraction measurements, the capacitance WMS results are consistent with those obtained simultaneously by the gamma densitometer. Generally, the total pressure gradient along the vertical riser has shown a significant decrease as the injected gas superficial velocity increased. In addition, the rate of decrease in total pressure gradient at the lower injected gas superficial velocities was found to be higher than that for higher gas superficial velocities. The frictional pressure gradient was also found to increase as the injected gas superficial velocity increased. For oil-water experiments, mixture density and total pressure gradient across the riser were found to increase with increasing water cut (ranging between 0 - 100%) and/or mixture superficial velocity. Phase slip between the oil and water was calculated and found to be significant at lower throughputs of 0.25 and 0.5 m/s. The phase inversion point always takes place at a point of input water cut of 42% when the experiments started from pure oil to water, and at an input water cut of 45% when the experiment’s route started from water to pure oil. The phase inversion point was accompanied by a peak increase of pressure gradient, particularly at higher oil-water mixture superficial velocities of 1, 1.5 and 2 m/s. The effects of air injection rates on the fluid flow characteristics were studied by emphasizing the total pressure gradient behaviour and identifying the flow pattern by analysing the output signals from gamma and WMS in air/oil/water experiments. Generally, riser base gas injection does not affect the water cut at the phase inversion point. However, a slight shift forward for the identified phase inversion point was found at highest flow rates of injected gas where the flow patterns were indicated as churn to annular flow. In terms of pressure gradient, the gas lifting efficiency (lowering pressure gradient) shows greater improvement after the phase inversion point (higher water cuts) than before and also at the inversion point. Also, it was found that the measured mean void fraction reaches its lowest value at the phase inversion point. These void fraction results were found to be consistent with previously published results.
17

High Temperature Gas to Liquid Metal Foam and Wire Mesh Heat Exchangers

Rezaey, Reza 26 November 2012 (has links)
Metal foams and wire meshes are open cell structures with low weight and density, high permeability and high thermal conductivity which make them attractive for a wide range of industrial applications involving fluid flow and heat transfer. In this study, the effect of natural convection, radiation and heat transfer enhancement of metal foams and wire meshes of 10 and 40 PPI (pores per inch) heat exchangers were examined and compared for different heat exchanger orientation, coolant flow rate and atmosphere temperature. Thermal spray coating processes were also used in development of a new class of high temperature stainless steel heat exchangers. Stainless steel wire mesh heat exchangers were prototyped by connecting the tube to the wire mesh using wire arc thermal spray coating. Thermal spray coating provided efficient connections between the wire mesh and the tubes’ outer surface, and has potential to replace expensive brazing or other metal connection techniques.
18

Thermohydraulische Modellierung der Kondensation von Dampf in einer unterkühlten Flüssigkeitsströmung

Gregor, Sabine, Beyer, Matthias, Prasser, Horst-Michael January 2006 (has links)
Nach einer kurzen technischen Beschreibung der Mehrzweck-Thermohydraulikversuchsanlage TOPFLOW und der verwendeten Messtechnik werden die theoretischen Grundlagen zur Modellierung der Kondensation von Dampf in einer Wasserströmung erläutert. Dabei gehen die Autoren besonders auf die Auswahl geeigneter Modelle zur Beschreibung des Wärmeübergangs und der Zwischenphasengrenzfläche im Druckbereich zwischen 10 und 65 bar detailliert ein. Außerdem werden verschiedene Drift-Flux-Modelle auf ihre Tauglichkeit anhand von experimentellen Daten geprüft. Da Veränderungen thermodynamischer und strömungstechnischer Parameter hauptsächlich in axialer Richtung stattfinden, wurden diese Modelle in einen eindimensionalen Code eingebettet, mit dem der Strömungsverlauf entlang einer vertikalen Rohrleitung mit einer Länge von 8 m und einem Nenndurchmesser von 200 mm berechnet werden kann. Anschließend werden Aufbau und Funktion dieses Programms vorgestellt. Nachfolgend vergleichen die Autoren experimentelle und berechnete Strömungsverläufe bei der Kondensation von Dampf sowohl in einer unterkühlten Wasserströmung als auch nahe der Siedetemperatur. Dabei wird der Einfluss wichtiger Randbedingungen, wie z.B. Druck oder Primärblasengröße, auf die Kondensationsintensität analysiert. Eine Einschätzung der Fehlerbanden für die experimentellen Daten, die verwendeten Gittersensoren und die numerische Simulation schließen den Bericht ab.
19

The Characterization Of The Effects Of Stress Concentrations On The Mechanical Behavior Of A Micronic Woven Wire Mesh

Kraft, Steven 01 January 2013 (has links)
Woven structures are steadily emerging as excellent reinforcing components in dualphase composite materials subjected to multiaxial loads, thermal shock, and aggressive reactants in the environment. Metallic woven wire mesh materials display good ductility and relatively high specific strength and specific resilience. While use of this class of materials is rapidly expanding, significant gaps in mechanical behavior classification remain. This thesis works to address the mechanics of material knowledge gap that exists for characterizing the behavior of a metallic woven structure, composed of stainless steel wires on the order of 25 microns in diameter, and subjected to various loading conditions and stress risers. Uniaxial and biaxial tensile experiments, employing Digital Image Correlation (DIC) as a strain measurement tool, are conducted on woven wire mesh specimens incised in various material orientations, and with various notch geometries. Experimental results, supported by an ample analytic modeling effort, indicate that an orthotropic elastic constitutive model is reasonably capable of governing the macro-scale elasticity of the subject material. Also, the Stress Concentration Factor (SCF) associated with various notch geometries is documented experimentally and analytically, and it is shown that the degree of stress concentration is dependent on both notch and material orientation. The Finite Element Method (FEM) is employed on the macro-scale to expand the experimental test matrix, and to judge the effects of a homogenization assumption when modeling metallic woven structures. Additionally, plasticity of the stainless steel woven wire mesh is considered through experimental determination of the yield surface, and a thorough analytic modeling effort resulting in a modified form of the Hill yield criterion. Finally, mesoscale plasticity of the woven structure is considered, and the form of a multi-scale failure criterion is proposed and exercised numerically.
20

Comparing wire-mesh sensor with neutron radiography for measurement of liquid fraction in foam

Ziauddin, Muhammad, Schleicher, Eckhard, Trtik, Pavel, Knüpfer, Leon, Skrypnik, Artem, Lappan, Tobias, Eckert, Kerstin, Heitkam, Sascha 02 February 2024 (has links)
The liquid fraction of foam is an important quantity in engineering process control and essential to interpret foam rheology. Established measurement tools for the liquid fraction of foam, such as optical measurement or radiography techniques as well as weighing the foam, are mostly laboratory-based, whereas conductivity-based measurements are limited to the global measurement without detailed spatial information of liquid fraction. In this work, which combines both types of measurement techniques, the conductivity-based wire-mesh sensor is compared with neutron radiography. We found a linear dependency between the liquid fraction of the foam and the wire-mesh readings with a statistical deviation less than 15%. However, the wire-mesh sensor systematically overestimates the liquid fraction, which we attribute to liquid bridge formation between the wires.

Page generated in 0.2093 seconds