• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 6
  • 5
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 45
  • 45
  • 14
  • 10
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Influence of neuromodulators and mechanical loading on pathological cell and tissue characteristics in tendinosis / Betydelsen av neuromodulatorer och mekanisk belastning för cell- och vävnadsförändringar vid tendinos

Fong, Gloria January 2017 (has links)
Background: Tendinosis is a painful chronic, degenerative condition characterized by objective changes in the tissue structure of a tendon. Hallmark features in tendinosis tendons include increased number of cells (hypercellularity), extracellular matrix (ECM) degradation and disorganized collagen. The progression of these pathological changes seen in tendinosis is neither well characterized nor fully understood. Studies have suggested that there are biochemical and mechanical elements involved in tendinosis. From a biochemical perspective, studies have shown that the tendon cells, tenocytes, produce a number of neuronal signal substances/neuromodulators, such as substance P (SP) and acetylcholine (ACh), traditionally thought to be confined to the nervous system. Furthermore, it has been shown that the expression of these neuromodulators is elevated in tendinosis tendons as compared to normal healthy tendons. Interestingly, studies on other tissue types have revealed that both SP and ACh can induce tissue changes seen in tendinosis, such as hypercellularity and collagen disorganization. From a mechanical angle, it has been suggested that overload of tendons, including extensive strain on the primary tendon cells (tenocytes), causes the degenerative processes associated with tendinosis. In vivo studies have shown that in overloaded tendons, the presence of neuromodulators is elevated, not least SP, which also precedes the development of the tissue changes seen in tendinosis. This further supports the importance of combining biochemical factors and mechanical factors in the pathogenesis of tendinosis. Hypotheses: In this thesis project, we hypothesize: 1) that neuromodulators, such as SP and ACh when stimulating their preferred receptors, the neurokinin 1 (NK-1 R) and muscarinic receptors (mAChRs), respectively, can cause increased tenocyte proliferation; 2) that the effects of SP and ACh on tenocyte proliferation converge mechanistically via a shared signalling pathway; 3) that mechanical loading of tenocytes results in increased production of SP by the tenocytes; and 4) that SP enhances collagen remodelling by tenocytes via NK-1 R. Model system: In vitro studies offer insight into the function of healthy tendon matrix and the etiology of tendinopathy. Using a cell culture model of human primary tendon cells, highly controlled experiments were performed in this thesis project to study a subset of biological and mechanical parameters that are implicated in tendinosis. The FlexCell® Tension System was used to study the influence of mechanical loading on tenocytes. As well, a collagen gel contraction assay was used to examine the intrinsic ability of tenocytes to reorganise type I collagen matrices under the influence of the neuromodulator SP. Results: The studies showed that exogenous administration of SP and ACh results in increased tenocyte proliferation that is mediated via activation of the ERK1/2 mitogenic pathway when the preferred receptors of SP and ACh, the NK-1 R and mAChRs, respectively, are stimulated. Furthermore, the studies resulted in the novel finding that SP and ACh both converge mechanistically via transforming growth factor (TGF)-β1 and that a negative feedback mechanism is present in which TGF-β1 downregulates the expression of mAChRs and NK-1 R. The studies also showed that SP can increase collagen remodelling and upregulate expression of genes related to tendinosis. Finally, it was established that tenocytes are mechanoresponsive by showing that cyclic mechanical loading increases the expression of SP by human tenocytes. Conclusions: This thesis work concludes that stimulation of NK-1 R and mAChRs results in proliferation of human tenocytes, which both involve the ERK1/2 signalling pathway. It also shows that SP and ACh converge mechanistically via TGF-β1 in their contribution to tenocyte proliferation. The role of hypercellularity in tendinosis tissue is unknown. Possibly, it has different roles at different stages of the disease. The findings also show that SP increases collagen remodelling, suggesting that increased SP not only results in hypercellularity but also contributes to the collagen morphology in tendinosis.
12

Complex mechanical conditioning of cell-seeded constructs can influence chondrocyte activity

Di Federico, Erica January 2014 (has links)
Articular cartilage represents a primary target for tissue engineering strategies as it does not functionally regenerate within the joint. Many tissue engineering approaches have focused on the in vitro generation of neo-cartilage using chondrocyte-seeded scaffolds. Several studies have reported the morphological appearance of native cartilage, although its functional competence has not been demonstrated. Accordingly, mechanical conditioning has often been introduced to enhance biosynthetic activity of chondrocytes within 3D constructs. However although this strategy has significantly up-regulated proteoglycan synthesis, its effects on the synthesis of the other major solid constituent, type II collagen, has been modest. Analyses of normal joint activities reveal that cartilage is subjected to shear superimposed on uniaxial compression. This complex mechanical state has motivated the design of a biaxial loading system intended for use in vitro to stimulated bovine chondrocytes seeded in agarose constructs. This necessitated the redesign of the construct from cylindrical morphology to accommodate shear loading. The experimental approach was complemented with the development of computational models, which permitted prediction of both cell distortion under biaxial loading regimens and nutrient diffusion within the 3D constructs. An initial study established the profile of proteoglycan and collagen synthesis in free swelling cultures up to day 12. The introduction of dynamic compression (15% strain, 1 Hz for 48 h) enhanced proteoglycan synthesis significantly. In addition, when dynamic shear (10%, 1 Hz) was superimposed on dynamic compression, total collagen synthesis was also up-regulated, within 3 days of culture, without compromising proteoglycan synthesis. Histological analysis revealed marked collagen deposition around individual chondrocytes. However, a significant proportion (50%) of collagen was released into the culture medium, suggesting that it was not fully processed. The overall biosynthetic activity was enhanced more when the biaxial stimulation was applied in a continuous mode as opposed to intermittent loading. The present work offers the potential for a more effective preconditioning of cell-seeded constructs with functional integrity intended for use to resolve defects in joint cartilage.
13

Human limb vibration and neuromuscular control

McHenry, Colleen Louise 01 May 2015 (has links)
Mechanical loading can modulate tissue plasticity and has potential applications in rehabilitation science and regenerative medicine. To safely and effectively introduce mechanical loads to human cells, tissues, and the entire body, we need to understand the optimal loading environment to promote growth and health. The purpose of this research was 1) to validate a limb vibration and compression system; 2) to determine the effect of limb vibration on neural excitability measured by sub-threshold TMS-conditioned H-reflexes and supra-threshold TMS; 3) to determine changes in center of pressure, muscle activity, and kinematics during a postural task following limb vibration; 4) to determine the effect of vibration on accuracy and long latency responses during a weight bearing visuomotor task. The major findings of this research are 1) the mechanical system presented in the manuscript can deliver limb vibration and compression reliably, accurate, and safely to human tissue; 2) sub-threshold cortical stimulation reduces the vibration-induced presynaptic inhibition of the H-reflex. This reduction cannot be attributed to an increase in cortical excitability during limb vibration because the MEP remains unchanged with limb vibration; 3) limb vibration altered the soleus and tibialis EMG activity during a postural control task. The vibration-induced increase in muscle activity was associated with unchanged center of pressure variability and reduced center of pressure complexity; 4) healthy individuals were able to accommodate extraneous afferent information due to the vibration interventions They maintained similar levels of accuracy of a visuomotor tracking task and unchanged long latency responses during an unexpected perturbation.
14

Osteocytes: Sensors of Mechanical Forces and Regulators of Bone Remodeling

Al-Dujaili, Saja Ali 06 December 2012 (has links)
Osteocytes make up the largest cell population in bone and are believed to be the main mechanosensory bone cells. During mechanical disuse and overuse, osteocyte viability is compromised and is found to be co-localized with increased osteoclastic bone resorption. Osteoclasts are recruited to remodel sites of apoptosis or bone microdamage; however, it is unclear whether the apoptotic or neighbouring healthy osteocytes are responsible for targeted bone remodeling. I hypothesized that apoptotic osteocytes are: (a) directly responsible for initiating bone remodeling by recruiting osteoclast precursors and directing osteoclast differentiation, and (b) indirectly responsible by signaling to nearby healthy osteocytes that, in turn, regulate osteoclastogenesis. In this in vitro study, apoptotic osteocytes were found to increase osteoclast precursor migration and osteoclast formation. Inhibition of the osteoclastogenic protein, receptor activator of nuclear factor kappa B ligand (RANKL), in conditioned medium abolished the osteoclastogenic effect of apoptotic osteocytes. Healthy osteocytes surrounded by apoptotic regions were modeled by applying apoptotic osteocyte conditioned medium to healthy osteocytes. These cells also promoted osteoclastogenesis, and had increased expression of macrophage colony stimulating factor (M-CSF) and vascular endothelial growth factor (VEGF). Inhibition of these factors abrogated the pro-osteoclastic effect of healthy osteocytes conditioned by apoptotic osteocytes. These findings support the hypothesis that apoptotic osteocytes directly and indirectly, by signaling to nearby healthy osteocytes, initiate osteoclastogenesis. One limitation of our and other conventional in vitro models is the lack of real-time cell communication and physiologically-relevant mechanical environment. Using a microfluidics approach, a miniature fluid shear delivery system was created for in vitro osteocyte cultures. The purpose of this microsystem was to increase control of the cell microenvironment for subsequent integration into scalable screening platforms or co-culture systems for studying osteocyte mechanobiology under physiological loading conditions. Fluid shear stress was periodically applied without external pumping using a deflecting elastomer membrane, where up to 2 Pa of oscillating shear stress was possible by manipulating membrane dimensions. Osteocyte culture, viability and calcium response were demonstrated in the microdevice. Further studies should attempt to characterize calcium signaling in osteocytes which, using a conventional macro-scale system, was found to dependent on cell-cell communication.
15

Osteocytes: Sensors of Mechanical Forces and Regulators of Bone Remodeling

Al-Dujaili, Saja Ali 06 December 2012 (has links)
Osteocytes make up the largest cell population in bone and are believed to be the main mechanosensory bone cells. During mechanical disuse and overuse, osteocyte viability is compromised and is found to be co-localized with increased osteoclastic bone resorption. Osteoclasts are recruited to remodel sites of apoptosis or bone microdamage; however, it is unclear whether the apoptotic or neighbouring healthy osteocytes are responsible for targeted bone remodeling. I hypothesized that apoptotic osteocytes are: (a) directly responsible for initiating bone remodeling by recruiting osteoclast precursors and directing osteoclast differentiation, and (b) indirectly responsible by signaling to nearby healthy osteocytes that, in turn, regulate osteoclastogenesis. In this in vitro study, apoptotic osteocytes were found to increase osteoclast precursor migration and osteoclast formation. Inhibition of the osteoclastogenic protein, receptor activator of nuclear factor kappa B ligand (RANKL), in conditioned medium abolished the osteoclastogenic effect of apoptotic osteocytes. Healthy osteocytes surrounded by apoptotic regions were modeled by applying apoptotic osteocyte conditioned medium to healthy osteocytes. These cells also promoted osteoclastogenesis, and had increased expression of macrophage colony stimulating factor (M-CSF) and vascular endothelial growth factor (VEGF). Inhibition of these factors abrogated the pro-osteoclastic effect of healthy osteocytes conditioned by apoptotic osteocytes. These findings support the hypothesis that apoptotic osteocytes directly and indirectly, by signaling to nearby healthy osteocytes, initiate osteoclastogenesis. One limitation of our and other conventional in vitro models is the lack of real-time cell communication and physiologically-relevant mechanical environment. Using a microfluidics approach, a miniature fluid shear delivery system was created for in vitro osteocyte cultures. The purpose of this microsystem was to increase control of the cell microenvironment for subsequent integration into scalable screening platforms or co-culture systems for studying osteocyte mechanobiology under physiological loading conditions. Fluid shear stress was periodically applied without external pumping using a deflecting elastomer membrane, where up to 2 Pa of oscillating shear stress was possible by manipulating membrane dimensions. Osteocyte culture, viability and calcium response were demonstrated in the microdevice. Further studies should attempt to characterize calcium signaling in osteocytes which, using a conventional macro-scale system, was found to dependent on cell-cell communication.
16

Energy Restriction Effects on Estrogen Status and the Skeletal Response to Loading

Swift, Sibyl Nichole 2010 August 1900 (has links)
Moderate energy restriction in young, exercising women attenuates the positive effects of exercise on bone density. Studies have shown that in the absence of adequate levels of circulating estrogen, there may not be enough functional estrogen receptor-a (ER-a) to respond adequately to loading. The experiment described in this document is significant because this model has not been explored under conditions of energy restriction (EnR) which are known to reduce circulating estrogen levels; it has been tested only in ovariectomized animals. The central hypothesis of this research is that reductions in estrogen due to EnR limit the ability of bone to respond to mechanical loading (LOAD) through a down-regulation of ER-a. Study one determined which nutrient’s (calcium or energy) restriction (-40 percent) had the greatest negative effects on the skeletal integrity of exercising female rats and whether exercise (EX) could mitigate these deleterious changes. EnR caused detrimental effects in many of the structural properties of bone; however EX attenuated losses in cancellous bone. Study two ascertained whether EX maintained cancellous bone mass in female rats subjected to graded EnR (-20 or -40 percent) and whether changes in endocrine factors were related. EX preserved cancellous bone volume and osteoblast activity under both levels of EnR, in addition to total body lean mass and bone mineral content. A similar maintenance of serum insulin-like growth factor and estradiol occurred in the EX EnR(40 percent) group suggesting that these changes may be related to the protective effects of EX. Study three determined the effects of 40 percent EnR on bone formation rate to LOAD in young adult female rats and tracked alterations in ovarian function (estradiol). Although higher than non-loaded animals, the response of bone to LOAD in EnR animals was dampened in comparison to energy-replete animals. The experiments described in this document are significant because these are the first experiments to explore the relationship between EnR and estrogen levels on cancellous bone response to LOAD. This is particularly important for physically active, energy restricted women because cancellous bone in these women will not experience the same effects of loading which can increase their risk for developing osteoporosis.
17

Mechanical regulation of bone regeneration and vascular growth in vivo

Boerckel, Joel David 03 May 2011 (has links)
Regeneration of large bone defects presents a critical challenge to orthopaedic clinicians as the current treatment strategies are severely limited. Tissue engineering has therefore emerged as a promising alternative to bone grafting techniques. This approach features the delivery of bioactive agents such as stem cells, genes, or proteins using biomaterial delivery systems which together stimulate endogenous repair mechanisms to regenerate the tissue. Because bone is a highly mechanosensitive tissue which responds and adapts dynamically to its mechanical environment, application of mechanical stimuli may enhance endogenous tissue repair. While mechanical loading has been shown to stimulate bone fracture healing, the ability of loading to enhance large bone defect regeneration has not been evaluated. The goal of this thesis was to evaluate the ability of sustained osteogenic growth factor delivery and functional biomechanical loading to stimulate vascularized repair of large bone defects in a rat segmental defect model. First, we evaluated the hypothesis that the relationship between protein dose and regenerative efficacy depends on delivery system. We determined the dose-response relationship between dose of recombinant human bone morphogenetic protein-2 (rhBMP-2) and bone regeneration in a hybrid alginate-based protein delivery system and compared with the current clinically-used collagen sponge. The hybrid delivery system improved bone formation and reduced the effective dose due to its sustained delivery properties in vivo. Next, we tested the hypothesis that transfer of compressive ambulatory loads during segmental defect repair enhances bone formation and subsequent limb regeneration. We found that delayed application of axial loads enhanced bone regeneration by altering bone formation, tissue differentiation and remodeling, and local strain distribution. Finally, we evaluated the hypothesis that in vivo mechanical loading can enhance neovascular growth to influence bone formation. We found that early mechanical loading disrupted neovascular growth, resulting in impaired bone healing, while delayed loading induced vascular remodeling and enhanced bone formation. Together, this thesis presents the effects of dose and delivery system on BMP-mediated bone regeneration and demonstrates for the first time the effects of in vivo mechanical loading on vascularized regeneration of large bone defects.
18

Peridynamic Theory for Progressive Failure Prediction in Homogeneous and Heterogeneous Materials

Kilic, Bahattin January 2008 (has links)
The classical continuum theory is not capable of predicting failure without an external crack growth criteria and treats the interface having zero thickness. Alternatively, a nonlocal continuum theory referred to as peridynamic theory eliminates these shortcomings by utilizing formulation that uses displacements, rather than derivatives of displacements, and including material failure in its constitutive relations through the response functions. This study presents a new response function as part of the peridynamic theory to include thermal loading. Furthermore, an efficient numerical algorithm is presented for solution of peridynamic equations. Solution method relies on the discretization of peridynamic equations at collocation points resulting in a set of ordinary differential equations with respect to time. These differential equations are then integrated using explicit methods. In order to improve numerical efficiency of the computations, spatial partitioning is introduced through uniform grids as arrays of linked lists. Furthermore, the domain of interest is divided into subunits each of which is assigned to a specific processor to utilize parallel processing using OpenMP. In order to obtain the static solutions, the adaptive dynamic relaxation method is developed for the solution of peridynamic equations. Furthermore, an approach to couple peridynamic theory and finite element analysis is introduced to take advantage of their salient features. The regions in which failure is expected are modeled using peridynamics while the remaining regions are modeled utilizing finite element method. Finally, the present solution method is utilized for damage prediction of many problems subjected to mechanical, thermal and buckling loads.
19

Gap Junction Formation in Heart Valves in Response to Mechanical Loading

O'Malley, Karen L. 28 June 2013 (has links)
Valvular interstitial cells (VICs) are responsible for the maintenance of heart valve leaflet structure, however their responses to mechanical loading are not fully understood. Further characterization of VIC responses with regards to phenotype (quiescent or activated via ?-smooth muscle actin [?-SMA]) and communication (through gap junction proteins connexins 43 and 26) were studied. Tissue strips from porcine aortic, pulmonary, and mitral valves were cyclically stretched in the circumferential direction at normal and above normal membrane tensions for 48 hours at 1 Hz, 37°C, and 5% CO2. Unloaded tissues were statically incubated concurrently with loaded tissues, and fresh tissue controls were collected immediately. VIC phenotype was identified by ?- SMA via immunohistochemical staining and cell enumeration, as well as by gene expression via RT-PCR. Gap junction protein Cx43 was also evaluated via immunohistochemical staining and cell enumeration and by gene expression via RT-PCR, whereas Cx26 was evaluated using immunohistochemical staining and cell enumeration only. Within the range tested, it was found that mechanical loading did not affect ?-SMA or gap junction protein levels, nor were any differences in responses noted between valve types. However, the ?-SMA gene expression level was significantly lower in the mitral valve compared to the aortic and pulmonary valves. This may indicate a difference in the genetic response pathways among the valves, but not in the functional outcomes. This difference may be explained by embryological origins, since the mitral valve, unlike the aortic and pulmonary valves, contains only VICs and no neural crest cells.
20

Suppression of osteoblast activity by disuse is prevented by low magnitude mechanical loading through a bone morphogenic protein-dependent Mechanism

Patel, Mamta Jashvantlal 15 January 2008 (has links)
Musculoskeletal pathologies associated with decreased bone mass, including osteoporosis and disuse-induced bone loss, affect millions of Americans annually. Many pharmaceutical treatments have slowed osteoporosis, but there is still no countermeasure for bone loss observed in astronauts. Additionally, high magnitude and low frequency impact has been recognized to increase bone and muscle mass under normal but not microgravity conditions. However, a low magnitude and high frequency (LMHF) mechanical load experienced in activities such as postural control has also been shown to be anabolic to bone. While several clinical trials have demonstrated that the LMHF mechanical loading normalizes bone loss in vivo, the target tissues and cells of the mechanical load and underlying mechanisms mediating the responses are unknown. As such, the objectives of this project are to analyze cellular and molecular changes induced in osteoblasts by LMHF loading and to investigate the utility of a LMHF mechanical load in mitigating microgravity-induced bone loss. The central hypothesis of the project is that simulated microgravity or disuse conditions induce bone loss by inhibiting expression of genes critical in regulating bone formation, osteoblast differentiation, and subsequent mineralization while a LMHF mechanical load prevents these effects. To test this hypothesis, we developed an in vitro disuse system using the Random Positioning Machine (RPM). For the first time, we reported systemic gene expression studies in 2T3 preosteoblasts using the RPM disuse system showing that 140 genes were altered by RPM exposure with over two-fold statistically significant changes. Moreover, we also utilized an independent simulator called the Rotating Wall Vessel (RWV) to partially validate the in vitro disuse systems and to confine the list of genes to those most critical in regulating bone formation. After comparative studies, we constricted the list to 15 commonly changed genes, three of which were not only decreased with disuse but also increased with mechanical loading in vivo. Furthermore, we employed the RPM disuse system to evaluate the mechanism by which a LMHF load mitigates bone loss. Exposure of osteoblasts to the RPM decreased both ALP activity and mineralization even in the presence of bone morphogenic protein 4 (BMP4), and the LMHF mechanical loading prevented the RPM-induced decrease in both markers. Mineralization induced by LMHF mechanical loading was enhanced by treatment with BMP4 and blocked by the BMP antagonist noggin, suggesting a role for BMPs in this response. In addition, LMHF mechanical loading rescued the RPM-induced decrease in gene expression of ALP, runx2, osteomodulin, parathyroid hormone receptor 1, and osteoglycin. These findings show that osteoblasts directly respond to LMHF mechanical loading, potentially leading to normalization or prevention of bone loss caused by disuse or microgravity conditions. The mechanosensitive genes identified here provide potential targets for pharmaceutical treatments that may be used in combination with LMHF mechanical loading to better treat osteoporosis, disuse-induced bone loss, or microgravity-induced bone loss.

Page generated in 0.0773 seconds