Spelling suggestions: "subject:"bimechanical philosophy"" "subject:"bymechanical philosophy""
1 |
The natural philosophy Of Samuel Taylor ColeridgeSysak, Janusz Aleksander January 2000 (has links) (PDF)
This thesis aims to show that Coleridge's thinking about science was inseparable from and influenced by his social and political concerns. During his lifetime, science was undergoing a major transition from mechanistic to dynamical modes of explanation. Coleridge's views on natural philosophy reflect this change. As a young man, in the mid-1790s, he embraced the mechanistic philosophy of Necessitarianism, especially in his psychology. In the early 1800s, however, he began to condemn the ideas to which he had previously been attracted. While there were technical, philosophical and religious reasons for this turnabout, there were also major political ones. For he repeatedly complained that the prevailing 'mechanical philosophy' of the period bolstered emerging liberal and Utilitarian philosophies based ultimately on self-interest. To combat the 'commercial' ideology of early nineteenth century Britain, he accordingly advocated an alternative, 'dynamic' view of nature, derived from German Idealism. I argue that Coleridge championed this 'dynamic philosophy' because it sustained his own conservative politics, grounded ultimately on the view that states possess an intrinsic unity, so are not the product of individualistic self-interest.
|
2 |
L’application des mathématiques aux phénomènes naturels chez LeibnizElawani, Jeffrey 08 1900 (has links)
Ce mémoire porte sur la réponse leibnizienne à la question de l’utilité des
mathématiques pour la connaissance de la nature, c’est-à-dire, en l’occurrence, pour la
connaissance des phénomènes corporels et de leurs relations. Dans le premier chapitre,
nous nous intéressons à la façon dont les notions abstraites mathématiques entrent dans la
connaissance la plus immédiate des choses. à travers le mode par lequel nous apparaît
l’individualité des phénomènes. Après avoir fourni des éclaircissements métaphysiques sur
la conception leibnizienne de l’individuation, nous nous plongeons dans l’étude de la
position spatiale à la lumière de l’analyse géométrique leibnizienne. Ce dernier prédicat
fournit une manière de déterminer les individus qui ne sont pas bien distingués par nous au
moyen de leurs qualités réelles. Considérés sous le seul angle de leur individuation spatiale,
les phénomènes ont un caractère idéal et indéterminé qui les rend immédiatement
susceptibles d’un traitement mathématique. Dans le second chapitre, nous nous intéressons
à la question de savoir pourquoi les explications physiques qui font usage des
mathématiques sont pour Leibniz préférables épistémologiquement. Nous nous tournons
en conséquence vers ses raisons d’adhérer à la philosophie mécanique, qui contient une
composante mathématique essentielle, afin d’étudier celle qui tient à la plus grande
intelligibilité du mécanisme. Nous tentons de montrer que la composante mathématique du
mécanisme contribue à cette intelligibilité parce que les mathématiques proposent une
mode de raisonnement valide et expressément adapté à la situation épistémologique des
esprits finis. Ce mode produit des raisonnements nécessaires aux moyens de notions
incomplètes. Il suscite également la découverte de nouvelles vérités en offrant à
l’imagination un support sensible, contrôlable et évident. / This thesis explores Leibniz’s solution to the problem of how mathematics are
useful to our understanding of the world, i.e., to our understanding of corporeal phenomena
and their relations. In the first chapter, it focuses on how abstract mathematical notions
enter in our most immediate understanding of the world. Here, the aim is connecting the
pervasiveness of mathematics to the peculiar way by which the individuality of phenomena
manifests itself to us. After some metaphysical remarks on Leibniz’s conception of
individuation, we study spatial position in the light of the new leibnizian geometrical
analysis : Analysis Situs. Spatial position provides us with a way to further distinguish
between individual phenomena whose qualities relevant to their real individuation remain
ignored. In the sole light of spatial individuation, phenomena are ideal and indeterminate.
This situation renders them susceptible to mathematical treatment without further
elaboration. In the second chapter, we turn our attention to the question of why
mathematical methods in philosophy of nature are epistemologically superior in Leibniz’s
eyes. We explore Leibniz’s reason to espouse a mechanical philosophy which comprise
indispensable mathematical notions. Leibniz believes that mechanical philosophy is the
most intelligible explanation of nature and we mean to assess how mathematics enter this
picture. We try to show that the mathematical aspects of mechanical philosophy make it
more intelligible by virtue of mathematics’ peculiar mode of reasoning. This mode of
reasoning is valid as well as most suited for our finite minds. It provides necessary
arguments through incomplete notions. It also encourages the discovery by assisting the
imagination with controlled and sensible support that makes knowledge more evident.
|
3 |
Concepts of the 'Scientific Revolution': An analysis of the historiographical appraisal of the traditional claims of the scienceOnyekachi Nnaji, John 12 June 2013 (has links)
´Scientific revolution´, as a concept, is both ´philosophically general´ and ´historically unique´. Both dual-sense of the term alludes to the occurrence of great changes in science. The former defines the changes in science as a continual process while the latter designate them, particularly, as the ´upheaval´ which took place during the early modern period. This research aims to demonstrate how the historicists´ critique of the justification of the traditional claims of science on the basis of the scientific processes and norms of the 16th and 17th centuries, illustrates the historical/local determinacy of the science claims. It argues that their identification of the contextual and historical character of scientific processes warrants a reconsideration of our notion of the universality of science. It affirms that the universality of science has to be sought in the role of such sources like scientific instruments, practical training and the acquisition of methodological routines / "Revolución científica", como concepto, se refiere a la vez a algo «filosóficamente general» e « históricamente único". Ambos sentidos del término aluden a la ocurrencia de grandes cambios en la ciencia. El primero define los cambios en la ciencia como un proceso continuo, mientras que el último los designa, en particular, como la "transformación", que tuvo lugar durante la Edad Moderna. Esta investigación tiene como objetivo demostrar cómo la crítica de los historicistas a la justificación de las características tradicionales de la ciencia sobre la base de los procesos y normas científicos de los siglos XVI y XVII, ilustra la determinación histórica y local de los atributos de la ciencia. Se argumenta que la identificación del carácter contextual e histórico de los procesos científicos justifica una reconsideración de nuestra noción de la universalidad de la ciencia. Se afirma que la universalidad de la ciencia se ha de buscar en el papel de tales fuentes como instrumentos científicos, la formación práctica y la adquisición de rutinas metodológicas
|
Page generated in 0.0631 seconds