• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

L’application des mathématiques aux phénomènes naturels chez Leibniz

Elawani, Jeffrey 08 1900 (has links)
Ce mémoire porte sur la réponse leibnizienne à la question de l’utilité des mathématiques pour la connaissance de la nature, c’est-à-dire, en l’occurrence, pour la connaissance des phénomènes corporels et de leurs relations. Dans le premier chapitre, nous nous intéressons à la façon dont les notions abstraites mathématiques entrent dans la connaissance la plus immédiate des choses. à travers le mode par lequel nous apparaît l’individualité des phénomènes. Après avoir fourni des éclaircissements métaphysiques sur la conception leibnizienne de l’individuation, nous nous plongeons dans l’étude de la position spatiale à la lumière de l’analyse géométrique leibnizienne. Ce dernier prédicat fournit une manière de déterminer les individus qui ne sont pas bien distingués par nous au moyen de leurs qualités réelles. Considérés sous le seul angle de leur individuation spatiale, les phénomènes ont un caractère idéal et indéterminé qui les rend immédiatement susceptibles d’un traitement mathématique. Dans le second chapitre, nous nous intéressons à la question de savoir pourquoi les explications physiques qui font usage des mathématiques sont pour Leibniz préférables épistémologiquement. Nous nous tournons en conséquence vers ses raisons d’adhérer à la philosophie mécanique, qui contient une composante mathématique essentielle, afin d’étudier celle qui tient à la plus grande intelligibilité du mécanisme. Nous tentons de montrer que la composante mathématique du mécanisme contribue à cette intelligibilité parce que les mathématiques proposent une mode de raisonnement valide et expressément adapté à la situation épistémologique des esprits finis. Ce mode produit des raisonnements nécessaires aux moyens de notions incomplètes. Il suscite également la découverte de nouvelles vérités en offrant à l’imagination un support sensible, contrôlable et évident. / This thesis explores Leibniz’s solution to the problem of how mathematics are useful to our understanding of the world, i.e., to our understanding of corporeal phenomena and their relations. In the first chapter, it focuses on how abstract mathematical notions enter in our most immediate understanding of the world. Here, the aim is connecting the pervasiveness of mathematics to the peculiar way by which the individuality of phenomena manifests itself to us. After some metaphysical remarks on Leibniz’s conception of individuation, we study spatial position in the light of the new leibnizian geometrical analysis : Analysis Situs. Spatial position provides us with a way to further distinguish between individual phenomena whose qualities relevant to their real individuation remain ignored. In the sole light of spatial individuation, phenomena are ideal and indeterminate. This situation renders them susceptible to mathematical treatment without further elaboration. In the second chapter, we turn our attention to the question of why mathematical methods in philosophy of nature are epistemologically superior in Leibniz’s eyes. We explore Leibniz’s reason to espouse a mechanical philosophy which comprise indispensable mathematical notions. Leibniz believes that mechanical philosophy is the most intelligible explanation of nature and we mean to assess how mathematics enter this picture. We try to show that the mathematical aspects of mechanical philosophy make it more intelligible by virtue of mathematics’ peculiar mode of reasoning. This mode of reasoning is valid as well as most suited for our finite minds. It provides necessary arguments through incomplete notions. It also encourages the discovery by assisting the imagination with controlled and sensible support that makes knowledge more evident.
2

Individuation : Ontogenes : Prolegomena till Gilbert Simondons genetiska ontologi

Sehlberg, Johan January 2011 (has links)
The following text constitutes an attempt to present the French philosopher Gilbert Simondon's genetic ontology through an account of his reconfiguration of the problem of individuation in his doctoral thesis from 1958, L'individuation à la lumière des notions de forme, information, potentiel, métastabilité. The intention is to show how Simondon through this reconfiguration of a classical philosophical problem – in which concepts and schemas from contemporary physics and technology is utilised in a critique of the bi-polar hylomorphic schema as its traditional, substantialistic solution – becomes able to articulate an anti-substantialistic and anti-reductionistic ontogenesis as first philosophy. A systematic philosophical conception that according to Simondon precedes every critical investigation of the subject as well as every scientific ontology – not by establishing a pre-critical position, but by exceeding Kant's critical position: that is, through a displacement toward a conception of the transcendental conditions for the genesis of being and thought as real conditions, rather than conditions of mere possibility. A displacement that in turn appears to respond to the question that frames this basic account of important concepts and schemas in Simondon, namely: in what sense and to what extent is it necessary for philosophical thought to be thought and developed in relation to other forms of thought?

Page generated in 0.1111 seconds