• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sensor de pressão microeletronico baseado no efeito piezoMOS / Microelectronic pressure sensor based on the piezoMOS effect

Garcia, Vitor 21 February 2006 (has links)
Orientador: Fabiano Fruett / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-06T06:47:54Z (GMT). No. of bitstreams: 1 Garcia_Vitor_M.pdf: 2431852 bytes, checksum: 99df32075176f9b0322278b0ce286ba5 (MD5) Previous issue date: 2006 / Resumo: Apresentamos neste trabalho um sensor de pressão de baixo consumo de potência. totalmente compatível com o processo de fabricação CMOS. constituído por um amplificador operacional sensível ao estresse mecânico fabricado sobre uma membrana. O desenho do layout do amplificador é feito de forma a maximizar o efeito do estresse sobre os transistores do par de entrada e minimizar sobre o restante do circuito. O projeto da membrana. bem como a localização dos elementos sensores sobre a mesma. Foram determinados através de simulação por elementos finitos. O sensor foi fabricado utilizando o processo CMOS 0.35 IJ.m AMS disponibilizado pelo Projeto Multi-Usuário (PMU) Fapesp. A membrana do sensor foi obtida através de um processo de desbaste mecânico da pastilha de silício onde o circuito foi fabricado. Analisamos também a dependência da tensão de limiar e da mobilidade de um transistor PMOS com relação ao estresse mecânico. O sensor fabricado apresentou um consumo de potência da ordem de 3 IJ. W e uma sensibilidade de 8.9 mV/psi / Abstract: A nove I Iow power totally CMOS compatible mechanical-stress sensitive differential amplifier. which can be used as a pressure sensor. is presented. This amplifier is based on a special designed layout where the stress sensitivity of the input differential pair. is maximized and the stress effects on the second stage are minimized. Finite element simulation was used to design the membrane and to locate the element sensor on it. The sensor was fabricated in a CMOS 0.35 IJ.m AMS process supported by the Fapesp Multi -User Project. In order to make a pressure sensor without a backside bulk micro-machining process. the thickness of the die was reduced by a mechanical polishing process. This work also analised the limiar-voltage and the mobility dependence with regard to mechanical stress. The sensor power consumption amounts to 3 IJ. W and the sensitivity amounts to 8.9 m V/psi / Mestrado / Eletrônica, Microeletrônica e Optoeletrônica / Mestre em Engenharia Elétrica
2

A Non Resonant Piezoelectric Sensor for Mass, Force and Stiffness Measurements

Shrikanth, V January 2015 (has links) (PDF)
The word piezo in greek means \to compress". Piezoelectric sensors work on the principle of direct piezoelectric effect, where a mechanical input generates a corresponding electric charge. The advantages of these sensors are wide fre-quency range of operation, high stiffness and small size. The main limitation of a piezoelectric sensor is that it cannot be used in measurements that are truly static. When a piezoelectric sensor is subjected to a static force, a fixed amount of charge is developed which would eventually decay at a rate dependent on the external impedance of the sensor circuitry. Operating sensors at resonance have been one of the methods to overcome the limitation of using piezoelectric sensors for static measurements. However, since both actuation and sensing are done by the same piezoelectric element, this results in a cross-talk of input and output signals. The drawback of using single piezoelectric element for actuation and sensing is overcome in this work by using two identical elements|one for actuation and one for sensing. The operating frequency is about 10 % of the natural frequency of the sensor, thus enabling to operate the sensor in non resonant mode. Since the actuation and sensing mechanisms are separated, static measurement can be carried out. The output signal from the sensing element is monitored by a Lock-in amplifier which works on the principle of phase sensitive detection. The advantage of this sensor design is high sensitivity along with narrow band detection. It can be shown that the voltage output of the sensor Vout / a1 + m(b1 + b2F + b3K) + c1F + d1K, where m and K are the external mass and interaction stiffness, respectively, F is the force acting on it. By maintaining any two of these three quantities constant, the remaining one can be measured without any difficulty. The non resonant mode of operation makes it possible to explore the potential of this sensor in investigating mechanics of solid-liquid (viscous), solid-solid (inelastic) and solid-tissue(viscoelastic) interactions. High sensitivity, wide range of measurement (1 g{1 g) and high resolutio(0.1 g) of the non resonant mass sensor makes it possible to use it in measure-ment of very small masses of the order 1 g. Typically, resonant sensors such as quartz crystal microbalance (QCM) are used for mass measurements at that range. However, since the performance of resonant sensors is controlled by damp-ing, a phenomenon known as `missing mass effect' arises. Operating a sensor in non resonant mode (stiffness controlled mode) is a way to overcome this problem, especially when the mass is viscous and/or viscoelastic in nature. Drosophila fly, egg and larvae are the viscoelastic masses that are measured using this non res-onant sensor. Evaporating sessile drops of water and Cetyl trimethylammonium bromide (CTAB) surfactant solution from nominally flat surfaces are monitored to characterize the sensor for viscous mass measurement. Evaporation rate per unit surface area remains more or less constant, during the initial stages of evap-oration. When the surfactant concentration is varied, evaporation rate per unit surface area is highest for solutions around critical miscelle concentration (CMC). A study is carried out to understand the effect of concentrations on spreading of ink over inkjet printing paper. It is found that the spreading is least around CMC, since spreading is dependent on the rate of evaporation. The non resonant piezoelectric sensor which has high stiffness and quick re-sponse is also capable of measuring very small frictional forces. This sensor is configured to work as an inertial slider. Friction measurement at micro scales is important for designing microsystems such as stick-slip actuators. At such length scales, experiments have to performed at low loads and high excitation frequencies. The support stiffness of such systems should be high and the force of friction generated during slipping, when displacements are smaller than the contact radius, are of the order of few N. The displacement during slipping (S) is dependent on the amplitude of the input voltage to the actuation element. The frictional force measured during slipping by the sensor element indicates that the co-efficient of friction ( ) is independent of the sliding velocity. The developed non resonant sensor in this work under small amplitude exci-tation, can measure force gradient (i.e. stiffness). The total force generated when a needle is inserted into a viscoelastic material is a sum of force due to stiffness of the material, friction and the cutting force at the tip. The force due to stiffness is dominant when the needle is bending the tissue before the puncture occurs. Use of the non resonant sensor in tandem with strain gauge force sensor enables distinguishing the three components of the total force. The slope of the force-displacement (F -d) curve during the initial stages of needle penetration into the viscoelastic material, before puncture, is indicative of the stiffness of the mate-rial. The peak force measured during penetration is higher for needles with larger diameters and lower insertion velocities. The viscoelastic response (relaxation) of the material remains independent of the insertion velocity, for a given thickness of the material and a constant needle diameter. In summary, the sensor designed and developed in this work operates in stiffness controlled mode to eliminate the `missing mass effect' encountered dur-ing resonant mode of operation, has been clearly highlighted. Mass, force and stiffness measurements are possible over a wide range just by varying the ampli-tude of the input signal to the actuator element. The advantages such as high stiffness, small size and high response makes it advantageous to carry out in-situ micro scale studies in scanning electron microscopy (SEM) and transmission electron microscopy (TEM).
3

Commande en position et vitesse sans capteur mécanique de moteurs synchrones à aimants permanents à pôles lisses : Application à un actionneur électromécanique pour aileron / Mechanical sensorless position and speed control of non-saillent permanent magnet synchronous machine : Application to an electromechanical actuator for aileron

Zgorski, Aloïs 21 February 2013 (has links)
Le problème de la commande sans capteur mécanique de la machine synchrone à aimants permanents (MSAP) est un problème très étudié dans le domaine de l'automatique et de l'électrotechnique. Le travail présenté s'intéresse au problème particulier de la commande sans capteur à basse vitesse des MSAP à pôles lisses. L'objectif est de proposer une méthode permettant de contrôler en position un actionneur électromécanique utilisé dans un contexte aéronautique (ici pour des ailerons). Une étude théorique des deux familles de machines, saillantes et non saillantes, a permis de montrer une différence d'observabilité des modèles de la MSAP selon la vitesse de la machine, avec en particulier une perte d'observabiltié à basse vitesse pour les machines à pôles lisses. Pour pallier cette perte, de nouveaux modèles sont développés, qui prennent en compte des vibrations de la machine, sollicitée par une injection de signaux. Une nouvelle analyse, appliquée à ces modèles, permet de garantir l'observabilité de la machine sur toute la gamme de vitesse, y compris à l'arrêt. Nous avons donc proposé une approche d'observation de la position et de la vitesse basée sur ces nouveaux modèles avec une injection bien choisie. Contrairement aux méthodes classiques basées sur la saillance, cette approche est applicable à tous les types de machine. Elle a été validée sur plusieurs bancs d'essais par l'application d'un observateur de Kalman étendu. De nombreux tests ont été réalisés sur un benchmark dédié aux applications industrielles. Les résultats ont montré les performances, la robustesse et les limites des observateurs proposés. Nous nous sommes également intéressés à l'asservissement en vitesse sans capteur mécanique de la machine, pour lequel nous avons proposé deux méthodes de synthèse d'observateurs. La première est basée sur la synthèse d'un observateur LPV robuste par approche polytopique. La seconde utilise un observateur à modes de glissement d'ordre deux à gains adaptatifs. La faisabilité expérimentale de ces deux observateurs a été démontrée. / The issue of sensorless control of permanent magnet synchronous machine (PMSM) has been well studied in the field of automation and electrical engineering. In the following work, we were interested in the peculiar problem of low-speed sensorless control of surface PMSM. The objective is to o er a new method for the position control of an industrial electro-mechanical actuator, considering an aeronautical context (a flap actuator). First, modeling and observability analyses of surface (non-salient) PMSM and interior (salient) PMSM have been studied. A loss of observability can be especially found at low speed for models of non-salient machines. To overcome this loss, we have developped new models, that take into account vibrations caused by a signal injection. A theoretical observability study of these latter models shows that observability is now guaranteed for the whole speed range, including standstill. We thus proposed an estimation method of the position and speed of the PMSM, based on these models, with a dedicated injection signal. Unlike sallient-based methods that are only valid for sailent machines, our approach can be used with all types of PMSM. An Extended Kalman Filter is used to observe the position, speed and eventually the load torque. The proposed approach was validated on a dedicated test bench. Many simulation and experimental tests were performed on an industrial-oriented benchmark. Results showed the performances, robustness and limitations of the proposed observers. We have also studied speed sensorless control of the machine. Indeed, two observer syntheses have been presented. The first one is based on robust synthesis of an LPV observer using a polytopic approach. The second method is an adaptative-gain second-order sliding mode observer. Experimental feasibility of the two methods has been demonstrated.
4

Principes alternatifs pour la détection de masse ultime via la dynamique non linéaire de capteurs résonants M/NEMS / Alternative principles for ultimate mass detection via the nonlinear dynamics of M/NEMS resonant sensors

Nguyen, Van-Nghi 11 December 2013 (has links)
Les capteurs résonants de type M/NEMS sont largement utilisés dans l’environnement biologique pour la mesure de masse de biomolécules en raison de leur grande précision combinée à une taille réduite. Classiquement, la détection et la quantification se basent sur le décalage fréquentiel induit par la masse ajoutée. Toutefois, ce décalage devient très faible et difficile à distinguer du bruit de mesure lorsque les masses considérées sont très petites. Il est théoriquement possible de gagner encore un ou plusieurs ordres de grandeur en résolution avec ces méthodes fréquentielles en diminuant encore les tailles et/ou en augmentant le rapport signal sur bruit, c’est-à-dire en actionnant de manière plus importante les résonateurs. Mais, dans ces conditions, les nanorésonateurs ont un comportement très fortement non-linéaire, source d’instabilités et de mixage de bruit basses et hautes fréquences susceptibles de dégrader la fiabilité et la précision des mesures. C’est pourquoi cette thèse a pour objectif de définir des principes de détection alternatifs basés sur l’exploitation des phénomènes non-linéaires, tels que les comportements hystérétiques et les bifurcations des courbes de réponse en fréquence. Pour cela, un modèle réduit de micro/nano-poutre résonante avec actionnement électrostatique est considéré. Les résultats numériques montrent que les brusques sauts d’amplitude à proximité des points de bifurcation permettent la détection de masses très faibles. Contrairement à la détection fréquentielle, ces sauts sont d’autant plus grands que la masse additionnelle est petite, ce qui rend cette technique particulièrement intéressante. De plus, le seuil de détection peut être ajusté avec la valeur de la fréquence de fonctionnement. Un mécanisme de réinitialisation est toutefois indispensable pour rendre la détection à nouveau possible après un saut d’amplitude. Afin d’automatiser la réinitialisation et ainsi permettre la détection en temps réel, un concept totalement innovant de détection de masse par balayage en fréquence des cycles d’hystérésis est proposé, qui permet de détecter, quantifier et localiser la masse ajoutée sur la poutre résonante. La mise en réseau de plusieurs poutres résonantes est également traitée et constitue un premier pas vers la mise en oeuvre de réseaux de milliers de capteurs. Pour cela, des architectures efficaces sont proposées et les modèles numériques sont adaptés en conséquence. Sur des configurations symétriques, l’exploitation des bifurcations de type brisure de symétrie permet là-encore d’améliorer la détection de masse. / Resonant M/NEMS mass sensors are widely used in biological environment for measuring the mass of biomolecules due to their high accuracy combined with a reduced size. Usually, the detection and the quantification are based on the frequency shift induced by an added mass. However, this shift becomes very small and difficult to distinguish from the noise of measurement as the considered masses are tiny. It is theoretically possible to increase further one or several orders of magnitude in resolution with these frequency methods by further reducing size and/or by increasing the signal-to-noise ratio, that is to say by operating more importantly the resonators. But in these conditions, the nanoresonators have a strongly nonlinear behavior, a source of instability and noise mix of low and high frequencies likely to degrade the reliability and the accuracy of measurements. Therefore, the thesis’s objective is to define alternative principles of detection based on exploiting the nonlinear phenomena, such as the hysteretic behavior and the bifurcations of frequency-response curves. To this end, a reduced model of resonant micro/nano-beam with electrostatic actuation is considered. The numerical results show that the sudden jumps in amplitude close to bifurcation points allow the detection of very small masses. Unlike the frequency detection, the smaller the added mass, the larger the increase of the jump, which makes this technique particularly interesting. In addition, the detection threshold can be adjusted with the value of the operating frequency. However, a mechanism of reinitialization is mandatory to make the detection possible again after a jump in amplitude. In order to automate the reinitialization and allow the detection in real-time, a completely innovative concept of mass detection by the frequency sweep of the hysteretic cycles is proposed to detect, quantify and locate the added mass on the resonant beam. An array of several resonant beams is also considered and constitutes a first step toward the implementation of arrays of thousands of sensors. Efficient architectures are proposed for this purpose and the numerical models are adapted accordingly. On symmetric configurations, exploiting the bifurcations of symmetry-breaking type allows here again to improve the mass detection.
5

Contribution à la continuité de service des actionneurs synchrones à aimants permanents. Tolérance au défaut de capteur mécanique. Détection de Défauts Electriques / Permanent Magnet Synchronous Drives Service Continuity, a Contribution. Mechanical Sensor Loss, a solution. Electrical Fault Detection

Boileau, Thierry 10 November 2010 (has links)
Dans les systèmes embarqués, les actionneurs électriques remplacent de plus en plus les actionneurs hydrauliques pour des raisons de compacité et de manœuvrabilité. Cependant, il est nécessaire que ces actionneurs électriques soient au moins aussi fiables ou disponibles que leurs homologues hydrauliques. Il faut donc choisir les topologies d'alimentation et d'entraînement adaptées pour ces actionneurs de sorte que le système d'actionnement puisse être reconfiguré en cas de défaillance dans la chaîne de conversion électromécanique. Pour qu'en cas d'apparition d'une panne, la continuité de service puisse être assurée, il est important que différents types de défaut d'un actionneur puisse être détectés à temps. Dans ce mémoire nous avons développé deux aspects de la continuité de service des machines synchrones à aimants permanents. Le premier concerne la commande sans capteur des actionneurs synchrones à aimants permanents, avec l’amélioration de sa robustesse, puis ensuite nous montrons comment cette commande peut-être utilisée de façon fiable pour assurer la continuité de service en cas de perte du capteur mécanique. Le deuxième aspect abordé est la détection de défaut d'isolation inter-spires des bobines statoriques des machines synchrones à aimants permanents commandées par un onduleur de tension en régulation de courant ou en régulation de vitesse. Dans un premier temps nous proposons un modèle de machine présentant le type de défaut à détecter et en déduisons deux méthodes. Ces deux méthodes exploitent le déséquilibre de la machine, elles sont vérifiées expérimentalement. Une troisième méthode basée sur l’estimation de résistance est présentée. Ces trois méthodes sont des méthodes fonctionnant « en ligne » et ne nécessitant pas de capteur supplémentaire par rapport à une commande classique / In embedded systems, electric actuators tend to replace hydraulic ones for compactness and manoeuvrability reasons. However, these electric actuators should be as reliable as hydraulic ones. For these actuators, adapted power topologies should be chosen in order to operate even if a failure occurs in the electromechanical conversion chain. To ensure the continuity of service in fault case, different kinds of actuator’s failures should be detected in time. Obviously, the detection methods should be adapted to the fault types. In this work, we developed two aspects related to the continuity of service, the first one on the sensorless control of permanent magnet synchronous machines (PMSM), its robustness and its application in mechanical sensor loss case. The second one deals with the detection of inter-turn insulation fault in stator windings of permanent magnets synchronous machines supply by voltage inverter. In a first time a PMSM model with inter-turn fault is developed, this model allows us to propose two detection methods. Both methods are based on the electric unbalance of the machine and are experimentally validated. Finally a third method based on resistance estimation is presented. These three methods are real time methods and no extra sensor is needed for a standard control
6

Inertialsensoren in der biomechanischen Gang- und Laufanalyse – Anforderungen an Sensoren und Algorithmik

Mitschke, Christian 20 November 2018 (has links)
Im Fokus dieser kumulativ angefertigten Dissertation stehen vier methodenorientierte biomechanische Studien, in welchen die potentiellen Fehlerquellen analysiert werden, die beim Einsatz von Inertialsensoren in der biomechanischen Gang- und Laufanalyse auftreten können. In den einzelnen Beiträgen werden die Einflüsse der Inertialsensoraufnahmefrequenz (Studie I) und des Messbereichs der Beschleunigungssensoren (Studie II) auf die kinematischen, kinetischen und räumlich-zeitlichen Parameter systematisch untersucht. Des Weiteren wird sich kritisch mit der Genauigkeit verschiedener Detektionsmethoden des initialen Bodenkontaktes (Studie III) sowie mit der Aussagekraft der maximalen Eversionsgeschwindigkeit (Studie IV) auseinandergesetzt. Um ein umfassendes Bild der Einflussgrößen zu erhalten, wurde in den Studien II, III und IV untersucht, ob die Materialcharakteristik der Laufschuhsohle die Genauigkeit der biomechanischen Parameter beeinflusst. Zudem wurde in Studie III geprüft, welchen zusätzlichen Effekt der Laufstil (Vor- und Rückfußlaufen) auf die Genauigkeit der initialen Bodenkontaktbestimmung hat sowie welchen Einfluss die Bewegungsgeschwindigkeit (Gehen und Laufen) auf die maximale Eversionsgeschwindigkeit nehmen kann (Studie IV). Die Ergebnisse der vier Untersuchungen werden am Ende dieser Arbeit in einem gemeinsamen Kontext diskutiert. Auf Grundlage der Erkenntnisse konnte eine Übersicht erstellt werden, welche sowohl die Mindestanforderungen an Inertialsensoren als auch die Einflussgrößen auf die Genauigkeit der biomechanischen Parameter enthält. Mit diesem Überblick erhalten Nutzer von Inertialsensoren (z.B. Sportler, Trainer, Mediziner und Wissenschaftler) bei der Planung einer Bewegungsanalyse die Unterstützung, die Sensoren mit der passenden Sensorspezifikation in Kombination mit den präzisesten Auswertealgorithmen auszuwählen. Zudem können die Informationen aus dieser Dissertation dazu genutzt werden, Erkenntnisse bereits publizierter Studien kritisch zu hinterfragen. / In previous studies, inertial sensors were used to investigate kinematic, kinetic, and spatio-temporal parameters during walking and running. The present cumulative doctoral thesis consists of four methodological studies. Two of the studies examine the influence of inertial sensor sampling rate (study I) and accelerometer operating range (study II) on the accuracy of biomechanical parameters. Another study investigated whether different published foot strike detection methods can accurately detect the time of initial ground contact (study III). The final study examined whether a single gyroscope can be used to accurately determine peak eversion velocity (study IV). In order to obtain a comprehensive view of the influencing factors, studies II, III and IV also investigated whether the material characteristics of the running shoe sole also influence the accuracy of the biomechanical parameters. Additionally, the effect of running style (forefoot or rearfoot) on the accuracy of foot strike detection methods was investigated in study III, and the effect of locomotion speed (walking, running slow up to running fast) on the accuracy of peak eversion velocity was examined in study IV. The results of the four investigations will be summarized and discussed in a common context. Based on the findings, an overview was prepared which contains both the minimum requirements for inertial sensors and also the influencing variables on the accuracy of the biomechanical parameters. This overview may assist users of inertial sensors (e.g. athletes, trainers, physicians, or scientists) in planning gait and running analyses to select inertial sensors with the appropriate specification in combination with the most accurate algorithms. In addition, the information from this dissertation can be used to critically consider the findings of published studies.

Page generated in 0.0778 seconds