Spelling suggestions: "subject:"bechanism 2analysis"" "subject:"bechanism 3analysis""
1 |
The Foundation for CADSPAM: Computer Aided Design of SPAtial MechanismsDoyle, Matthew Edward 17 December 1997 (has links)
This thesis presents the foundation of a computer program for the unified design of spatial mechanisms. The program will be capable of synthesizing any mechanism that can be described using an equivalent chain containing only revolute and prismatic joints. The supporting analysis routine will be general and will be able to analyze any lower pair mechanism using the iterative approach developed by Sheth and Uicker [1972].
Unlike precision point synthesis methods that allow only a limited number of positions to be specified, optimization will be employed to synthesize a wide variety of mechanisms. This approach will allow the user to interactively monitor and control objectives and constraints, which will yield practical solutions to realistic mechanism design problems.
The creation of this program will provide practicing engineers with the capacity to design many previously intractable spatial mechanisms. / Master of Science
|
2 |
Shear strength of reinforced concrete dapped-end beams using mechanism analysis.Yang, Keun-Hyeok, Ashour, Ashraf, Lee, J.K. 17 February 2010 (has links)
yes / A mechanism analysis based on the upper-bound theorem of concrete plasticity is developed to predict the critical
failure plane and corresponding shear capacity of reinforced concrete dapped-end beams. Failure modes observed in
physical tests of reinforced concrete dapped-end beams are idealised as an assemblage of two moving blocks separated
by a failure surface of displacement discontinuity. The developed mechanism analysis rationally represents the effect of
different parameters on failure modes; as a result, the predicted shear capacity is in good agreement with test results.
On the other hand, empirical equations specified in the Precast/Prestressed Concrete Institute design method and strutand-tie
model based on ACI 318-05 highly underestimate test results. The shear capacity of dapped-end beams predicted
by the mechanism analysis and strut-and-tie model decreases with the increase of shear span-to-full beam depth ratio
when failure occurs along diagonal cracks originating at the bottom corner of the full-depth beam, although the shear
span-to-full beam depth ratio is ignored in the Precast/Prestressed Concrete Institute design method.
|
3 |
Shear Capacity of Monolithic Concrete Joints without Transverse Reinforcement.Yang, Keun-Hyeok, Sim, J-I., Kang, J-H., Ashour, Ashraf 09 1900 (has links)
yes / A mechanism analysis based on the upper-bound theorem of concrete plasticity for monolithic concrete joints without transverse reinforcement is presented. Concrete is modelled as a rigid–perfectly plastic material obeying modified Coulomb failure criteria. Existing stress–strain relationships of concrete in compression and tension are comprehensively modified using the crack band theory to allow for concrete type and maximum aggregate size. Simple equations for the effectiveness factor for compression, ratio of effective tensile strength to compressive strength and angle of concrete friction are then mathematically developed using the modified stress–strain relationships of concrete. In addition, 12 push-off specimens made of all-lightweight, sand–lightweight and normal-weight concrete having maximum aggregate size between 4 and 19 mm were physically tested. Test results and mechanism analysis clearly showed that the shear capacity of monolithic concrete joints increased with the increase of the maximum aggregate size and dry density of concrete. The mean and standard deviation of the ratio between experimentally measured and predicted (by the mechanism analysis shear capacities) are 1·01 and 0·16 respectively, showing a closer prediction and less variation than Vecchio and Collins' equation, regardless of concrete type and maximum aggregate size.
|
4 |
Kinetics and Catalysis of the Water-Gas-Shift Reaction: A Microkinetic and Graph Theoretic ApproachCallaghan, Caitlin A. 04 May 2006 (has links)
The search for environmentally benign energy sources is becoming increasingly urgent. One such technology is fuel cells, e.g., the polymer electrolyte membrane (PEM) fuel cell which uses hydrogen as a fuel and emits only H2O. However, reforming hydrocarbon fuels to produce the needed hydrogen yields reformate streams containing CO2 as well as CO, which is toxic to the PEM fuel cell at concentrations above 100ppm. As the amount of CO permitted to reach the fuel cell increases, the performance of the PEM fuel cell decreases until it ultimately stops functioning. The water-gas-shift (WGS) reaction, CO + H2O <-> H2 + CO2, provides a method for extracting the energy from the toxic CO by converting it into usable H2 along with CO2 which can be tolerated by the fuel cell. Although a well established industrial process, alternate catalysts are sought for fuel cell application. Catalyst selection for the WGS reaction has, until recently, been based on trial-and-error screening of potential catalysts due to a lack of fundamental understanding of the catalyst's functioning. For this reason, we embarked on a deeper understanding of the molecular events involved in the WGS reaction such that a more systematic and theory-guided approach may be used to design and select catalysts more efficiently, i.e., rational catalyst design. The goal of this research was to develop a comprehensive predictive microkinetic model for the WGS reaction which is based solely on a detailed mechanism as well as theories of surface-molecule interactions (i.e., the transition-state theory) with energetic parameters determined a priori. This was followed by a comparison of the experimental results of sample catalysts to validate the model for various metal-based catalysts of interest including Cu, Fe, Ni, Pd, Pt, Rh, and Ru. A comprehensive mechanism of the plausible elementary reaction steps was compiled from existing mechanisms in the literature. These were supplemented with other likely candidates which are derivatives of those identified in the literature. Using established theories, we predicted the kinetics of each of the elementary reaction steps on metal catalysts of interest. The Unity Bond Index-Quadratic Exponential Potential Method (UBI-QEP) was used to predict the activation energies in both the forward and reverse direction of each step based solely on heats of chemisorption and bond dissociation energies of the species involved. The Transition State Theory (TST) was used to predict the pre-exponential factors for each step assuming an immobile transition state; however, the pre-exponential factors were adjusted slightly to ensure thermodynamic consistency with the overall WGS reaction. In addition, we have developed a new and powerful theoretical tool to gain further insight into the dominant pathways on a catalytic surface as reactants become products. Reaction Route (RR) Graph Theory incorporates fundamental elements of graph theory and electrical network theory to graphically depict and analyze reaction mechanisms. The stoichiometry of a mechanism determines the connectivity of the elementary reaction steps. Each elementary reaction step is viewed as a single branch with an assumed direction corresponding to the assumed forward direction of the elementary reaction step. The steps become interconnected via nodes which reflect the quasi-steady state conditions of the species represented by the node. A complete RR graph intertwines a series of routes by which the reactants may be converted to products. Once constructed, the RR graph may be converted into an electrical network by replacing, in the steady-state case, each elementary reaction step branch with a resistor and including the overall reaction as a power source where rate and affinity correspond to current and voltage, respectively. A simplification and reduction of the mechanism may be performed based on results from a rigorous De Donder affinity analysis as it correlates to Kirchhoff's Voltage Law (KVL), akin to thermodynamic consistency, coupled with quasi-steady state conditions, i.e., conservation of mass, analyzed using Kirchhoff's Current Law (KCL). Hence, given the elementary reaction step resistances, in conjunction with Kirchhoff's Laws, a systematic reduction of the network identifies the dominant routes, e.g., the routes with the lowest resistance, along with slow and quasi-equilibrium elementary reaction steps, yielding a simplified mechanism from which a predictive rate expression may possibly be derived. Here, we have applied RR Graph Theory to the WGS reaction. An 18-step mechanism was employed to understand and predict the kinetics of the WGS reaction. From the stoichiometric matrix for this mechanism, the topological features necessary to assemble the RR graph, namely the intermediate nodes, terminal nodes, empty reaction routes and full reaction routes, were enumerated and the graph constructed. The assembly of the RR graph provides a comprehensive overview of the mechanism. After reduction of the network, the simplified mechanism, comprising the dominant pathways, identified the quasi-equilibrium and rate-determining steps, which were used to determine the simplified rate expression which predicts the rate of the complete mechanism for different catalysts. Experimental investigations were conducted on the catalysts of interest to validate the microkinetic model derived. Comparison of the experimental results from the industrially employed catalysts (e.g., Cu, Ni, Fe, etc.) shows that the simplified microkinetic model sufficiently predicts the behavior of the WGS reaction for this series of catalysts with very good agreement. Other catalysis tested (Pt, Pd, Rh and Ru), however, had sufficient methanation activity that a direct comparison with WGS kinetics could not be made. In summary, we have developed a comprehensive approach to unravel the mechanism and kinetics of a catalytic reaction. The methodology described provides a more fundamental depiction of events on the surface of a catalyst paving the way for rational analysis and catalyst design. Illustrated here with the WGS reaction as an example, we show that the dominant RRs may be systematically determined through the application of rigorous fundamental constraints (e.g. thermodynamic consistency and mass conservation) yielding a corresponding explicit a priori rate expression which illustrates very good agreement not only with the complete microkinetic mechanism, but also the experimental data. Overall, RR graph theory is a powerful new tool that may become invaluable for unraveling the mechanism and kinetics of complex catalytic reactions via a common-sense approach based on fundamentals.
|
5 |
A Study on Integrated Thermal Control to Improve Intellectual Work Performance / 知的作業パフォーマンス向上のための統合温熱制御に関する研究Ueda, Kimi 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(エネルギー科学) / 甲第23289号 / エネ博第414号 / 新制||エネ||80(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー社会・環境科学専攻 / (主査)教授 下田 宏, 教授 手塚 哲央, 教授 椹木 哲夫 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DGAM
|
6 |
Theoretical Study on the Mechanism of Removing Nitrogen Oxides using Isocyanic Acid.Nowroozi-Isfahani, Taraneh 01 August 2001 (has links) (PDF)
The mechanism of RAPRENOx reactions - RAPid REduction of Nitrogen Oxides using Isocyanic acid - proposed by Robert A. Perry1 in an attempt to help control the emission of nitrogen oxides pollutant into the atmosphere, has been re-investigated theoretically. The study of reaction mechanisms was carried out using Chemist software2. All mathematically possible elementary steps have been evaluated and the chemically reasonable ones have been considered to propose new sets of reaction mechanisms. Density Functional Theory (B3LYP/6-31 G**) calculations using Gaussian 983 were made in order to study the relative energies of all species and to predict the energy barrier of each elementary step. As a consequence of our study, there are two more sets of reaction mechanisms (in addition to Perry’s mechanism), that could be possible for the propagation step of RAPRENOx process.
|
7 |
Modeling Oxidation-Induced Degradation and Environment-Induced Damage of Thermal Barrier CoatingsZhang, Bochun 20 July 2022 (has links)
Thermal Barrier Coating systems (TBCs) serve as a key component in gas turbines in aerospace engines, isolating the metallic substrate from severe heat flux of the environment. The durability of TBCs has been considered to be a critical issue to determine the service lifespan of hot section components. Comprehensive studies of failure mechanisms benefit the gas turbine industry to develop TBCs with better material properties and stable microstructures, thus potentially enhancing their durability.
To date, many failure mechanism analyses have been conducted based on the understanding of critical residual stress developed under different thermal tests. For the present study, using the Finite Element (FE) method with temperature-process-dependent model parameters, the maximum residual stress is calculated with evolution of the localized/global interfacial roughness profile based on Electron Beam-Physical Vapour Deposition Thermal Barrier Coating system (EB-PVD TBCs). With studies of cracking routes from past research, qualitative failure mechanism analysis is conducted for EB-PVD TBCs. In addition, the estimated energy release rates are compared to reveal the effect of different thermal profiles on the crack driving forces for Atmospheric Plasma Sprayed Thermal Barrier Coating systems (APS-TBCs). Using previously observed cracking routes from different thermal cycling experiments, a quantitative failure mechanism analysis is conducted for APS-TBCs with modified analytical expressions.
In addition, literature works revealed that physics and mechanics-based models were proposed to evaluate environment induced damage. For the last part of my research, erosion of EB-PVD TBCs is estimated using a modified solid particle erosion model. A stochastic approach is applied to study the erosion of EB-PVD topcoat (TC) under real engine service conditions. The durability of TBCs is affected by both oxidation-induced degradation and environment-induced damage. The combination of “internal” crack driving forces (generated from residual stresses developed upon different stages of thermal cycles) and “external” erosion damage (from temperature-process dependent brittle/ductile erosion) lead to complexity of evaluating durability under different service conditions.
|
8 |
Shear strengthening of continuous reinforced concrete T-beams using wire rope unitsYang, Keun-Hyeok, Byun, H-Y., Ashour, Ashraf January 2009 (has links)
Yes / A simple unbonded-type shear strengthening technique for reinforced concrete beams using wire rope units is presented. Ten two-span reinforced concrete T-beams externally strengthened with wire rope units and an unstrengthened control beam were tested to failure, to explore the significance and shortcomings of the developed unbonded-type shear strengthening technique. The main parameters investigated were the type, amount and prestressing force of wire rope units. All beams tested failed, owing to significant diagonal cracks within the interior shear span. However, beams strengthened with closed type wire rope units exhibited more ductile failure than the unstrengthened, control beam or those strengthened with U-type wire rope units. The diagonal cracking load and ultimate shear capacity of beams with closed-type were linearly increased with the increase of vertical confinement stresses in concrete owing to the prestressing force in wire rope units, while those of beams with U-type were minimally influenced. It was also observed that average stresses in closed-type wire ropes crossing diagonal cracks at ultimate strength of beams tested were much higher than those in U-type wire ropes, showing better utilization in the former case. The shear capacity of beams with closed-type wire rope units is conservatively predicted using the equations of ACI 318-05, modified to account for the external wire rope units. A mechanism analysis based on the upper bound approach of the plasticity theory is also developed to assess the load capacity of beams tested. The predictions by the mechanism analysis for beams with closed-type wire rope units are in good agreement with test results and showed a coefficient of variation slightly less than the modified ACI 318-05 equations. However, the modified ACI 318-05 equations are more conservative and simpler to use for design purposes.
|
9 |
Shear capacity of reinforced concrete corbels using mechanism analysisYang, Keun-Hyeok, Ashour, Ashraf January 2012 (has links)
Yes / A mechanism analysis is developed to predict the shear capacity of reinforced concrete corbels. Based on shear failure observed in experimental tests, kinematically admissible failure mechanisms are idealised as an assemblage of two rigid blocks separated by a failure plane of displacement discontinuity. Shear capacity predictions obtained from the developed mechanism analysis are in better agreement with corbel test results of a comprehensive database compiled from the available literature than other existing models for corbels. The developed mechanism model shows that the shear capacity of corbels generally decreases with the increase of shear span-to-depth ratio, increases with the increase of main longitudinal reinforcement up to a certain limit beyond which it remains constant, and decreases with the increase of horizontal applied loads. It also demonstrates that the smaller the shear span-to-overall depth ratio of corbels, the more effective the horizontal shear reinforcement.
|
10 |
Shear friction strength of monolithic concrete interfacesKwon, S-J., Yang, Keun-Hyeok, Hwang, Y-H., Ashour, Ashraf 01 November 2016 (has links)
Yes / This paper presents an integrated model for shear friction strength of monolithic concrete interfaces derived from the upper-bound theorem of concrete plasticity. The model accounts for the effects of applied axial stresses and transverse reinforcement on the shear friction action at interfacial shear cracks. Simple equations were also developed to generalize the effectiveness factor for compression, ratio of effective tensile to compressive strengths and angle of concrete friction. The reliability of the proposed model was then verified through comparisons with previous empirical equations and 103 push-off test specimens compiled from different sources in the literature.
The previous equations considerably underestimate the concrete shear transfer capacity and the underestimation is notable for the interfaces subjected to additional axial stresses. The proposed model provides superior accuracy in predicting the shear friction strength, resulting in a mean between experimental and predicted friction strengths of 0.97 and least scatter. Moreover, the proposed model has consistent trends with test results in evaluating the effect of various parameters on the shear friction strength.
|
Page generated in 0.0457 seconds