• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • Tagged with
  • 19
  • 7
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Getting “in touch” with oral texture perception: the development, adaptation, and execution of methods for assessing how humans perceive texture within the oral cavity

Miles, Brittany L. January 2021 (has links)
No description available.
12

Interaction of the adhesion GPCR CIRL with ionotropic pathways during mechanosensation

Dahlhoff, Stefan 27 June 2022 (has links)
The sensation of mechanical signals is vital for all animals. For this task Drosophila larvae are equipped with chordotonal organs. These are specialized mechanosensory organs which are composed of multicellular subunits. In this study I show how metabotropic signaling by the adhesion GCPR CIRL interacts with part of the ionotropic pathways during mechanosensation in sensory neurons of the pentascolopidial chordotonal organ (lch5). CIRL modulates cAMP levels in sensory neurons and thereby shapes the receptor potential response to mechanical stimuli. Here, CIRL forms a functional interaction with the TRP channel NOMPC in which nompC is epistatic to Cirl. Furthermore, the evidence presented suggest the presence of another target of CIRL and the involvement of a further signaling pathway besides cAMP modulation. In the second part of the study, I describe a method to express the anion-selective channelrhodopsin GtACR1 in individual of the five neurons of the lch5. For this I used the MARCM approach which generates genetic mosaics during the development of the neurons of interest. Thereby a specific subset of cells deriving from a common precursor expresses the desired protein GtACR1.
13

The Virtual Ear: Deducing Transducer Function in the Drosophila Ear / Das Virtuelle Ohr: Aufklärung der Funktionsweise des Transducers in Fliegenohr

Lu, Qianhao 12 October 2011 (has links)
No description available.
14

Analyzing receptor responses in the Drosophila Johnston's organ with two-photon microscopy

Jähde, Philipp 24 August 2016 (has links)
No description available.
15

Investigating spatial distribution and dynamics of membrane proteins in polymer-tethered lipid bilayer systems using single molecule-sensitive imaging techniques

Ge, Yifan 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Plasma membranes are complex supramolecular assemblies comprised of lipids and membrane proteins. Both types of membrane constituents are organized in highly dynamic patches with profound impact on membrane functionality, illustrating the functional importance of plasma membrane fluidity. Exemplary, dynamic processes of membrane protein oligomerization and distribution are of physiological and pathological importance. However, due to the complexity of the plasma membrane, the underlying regulatory mechanisms of membrane protein organization and distribution remain elusive. To address this shortcoming, in this thesis work, different mechanisms of dynamic membrane protein assembly and distribution are examined in a polymer-tethered lipid bilayer system using comple-mentary confocal optical detection techniques, including 2D confocal imaging and single molecule-sensitive confocal fluorescence intensity analysis methods [fluorescence correlation spectroscopy (FCS) autocorrelation analysis and photon counting histogram (PCH) method]. Specifically, this complementary methodology was applied to investigate mechanisms of membrane protein assembly and distribution, which are of significance in the areas of membrane biophysics and cellular mechanics. From the membrane biophysics perspective, the role of lipid heterogeneities in the distribution and function of membrane proteins in the plasma membrane has been a long-standing problem. One of the most well-known membrane heterogeneities are known as lipid rafts, which are domains enriched in sphingolipids and cholesterol (CHOL). A hallmark of lipid rafts is that they are important regulators of membrane protein distribution and function in the plasma membrane. Unfortunately, progress in deciphering the mechanisms of raft-mediated regulation of membrane protein distribution has been sluggish, largely due to the small size and transient nature of raft domains in cellular membranes. To overcome this challenge, the current thesis explored the distribution and oligomerization of membrane proteins in raft-mimicking lipid mixtures, which form stable coexisting CHOL-enriched and CHOL-deficient lipid domains of micron-size, which can easily be visualized using optical microscopy techniques. In particular, model membrane experiments were designed, which provided insight into the role of membrane CHOL level versus binding of native ligands on the oligomerization state and distribution of GPI-anchored urokinase plasminogen activator receptor (uPAR) and the transmembrane protein αvβ3 integrin. Experiments on uPAR showed that receptor oligomerization and raft sequestration are predominantly influenced by the binding of natural ligands, but are largely independent of CHOL level changes. In contrast, through a presumably different mechanism, the sequestration of αvβ3 integrin in raft-mimicking lipid mixtures is dependent on both ligand binding and CHOL content changes without altering protein oligomerization state. In addition, the significance of membrane-embedded ligands as regulators of integrin sequestration in raft-mimicking lipid mixtures was explored. One set of experiments showed that ganglioside GM3 induces dimerization of α5β1 integrins in a CHOL-free lipid bilayer, while addition of CHOL suppresses such a dimerization process. Furthermore, GM3 was found to recruit α5β1 integrin into CHOL-enriched domains, illustrating the potential sig-nificance of GM3 as a membrane-associated ligand of α5β1 integrin. Similarly, uPAR was observed to form complexes with αvβ3 integrin in a CHOL dependent manner, thereby causing the translocation of the complex into CHOL-enriched domains. Moreover, using a newly developed dual color FCS and PCH assay, the composition of uPAR and integrin within complexes was determined for the first time. From the perspective of cell mechanics, the characterization of the dynamic assembly of membrane proteins during formation of cell adhesions represents an important scientific problem. Cell adhesions play an important role as force transducers of cellular contractile forces. They may be formed between cell and extracellular matrix, through integrin-based focal adhesions, as well as between different cells, through cadherin-based adherens junctions (AJs). Importantly, both types of cell adhesions act as sensitive force sensors, which change their size and shape in response to external mechanical signals. Traditionally, the correlation between adhesion linker assembly and external mechanical cues was investigated by employing polymeric substrates of adjustable substrate stiffness containing covalently attached linkers. Such systems are well suited to mimic the mechanosensitive assembly of focal adhesions (FAs), but fail to replicate the rich dynamics of cell-cell linkages, such as treadmilling of adherens junctions, during cellular force sensing. To overcome this limitation, the 2D confocal imaging methodology was applied to investigate the dynamic assembly of N-cadherin-chimera on the surface of a polymer-tethered lipid multi-bilayer in the presence of plated cells. Here, the N-cadherin chimera-functionalized polymer-tethered lipid bilayer acts as a cell surface-mimicking cell substrate, which: (i) allows the adjustment of substrate stiffness by changing the degree of bilayer stacking and (ii) enables the free assembly of N-cadherin chimera linkers into clusters underneath migrating cells, thereby forming highly dynamic cell-substrate linkages with remarkable parallels to adherens junctions. By applying the confocal methodology, the dynamic assembly of dye-labeled N-cadherin chimera into clusters was monitored underneath adhered cells. Moreover, the long-range mobility of N-cadherin chimera clusters was analyzed by tracking the cluster positions over time using a MATLAB-based multiple-particle tracking method. Disruption of the cytoskeleton organization of plated cells confirmed the disassembly of N-cadherin chimera clusters, emphasizing the important role of the cytoskeleton of migrating cells during formation of cadherin-based cell-substrate linkages. Size and dynamics of N-cadherin chimera clusters were also analyzed as a function of substrate stiffness.
16

Micro-Newton Force Measurement and Actuation : Applied to Genetic Model Organisms

Khare, Siddharth M January 2016 (has links) (PDF)
Mechanical forces have been observed to affect various aspects of life, for example, cell differentiation, cell migration, locomotion and behavior of multicellular organisms etc. Such forces are generated either by external entities such as mechanical touch, fluid flow, electric and magnetic fields or by the living organisms themselves. Study of forces sensed and applied by living organisms is important to understand the interactions between organisms and their environment. Such studies may reveal molecular mechanisms involved in mechanosensation and locomotion. Several techniques have been successfully applied to measure forces exerted by single cells and cell monolayers. The earliest technique made use of functionalized soft surfaces and membranes as substrates on which cell monolayers were grown. The forces exerted by the cells could be measured by observing deformation of the substrates. Atomic Force Microscope (AFM) is another sensitive instrument that allows one to exert and measure forces in pico-Newton range. Advances in micromachining technology have enabled development of miniature force sensors and actuators. Latest techniques for mechanical force application and measurement use micromachined Silicon cantilevers in single as well as array form and micropillar arrays. Micropillar arrays fabricated using soft lithography enabled the use of biocompatible materials for force sensors. Together, these techniques provide access to a wide range of forces, from sub micro-Newton to milli-Newton. In the present work, types of forces experienced in biological systems and various force measurement and actuation techniques will be introduced. This will be followed by in depth description of the two major contributions of this thesis, 1) ―Colored polydimethylsiloxane micropillar arrays for high throughput measurements of forces applied by genetic model organisms‖. Biomicrofluidics, January 29, 2015. doi: 10.1063/1.4906905 2) ―Air microjet system for non-contact force application and the actuation of micro-structures‖. Journal of micromechanics and microengineering, December 15, 2015. doi: 10.1088/0960-1317/26/1/017001 Device developed for force measurement consists of an array of micropillars made of a biocompatible polymer Poly Dimethyl Siloxane (PDMS). Such devices have been used by researchers to measure traction forces exerted by single cells and also by nematode worm Caenorhabditis elegans (C. elegans). C. elegans is allowed to move in between the micropillars and the locomotion is video recorded. Deflection of the micropillar tips as the worm moves is converted into force exerted. Transparent appearance of C. elegans and PDMS poses difficulties in distinguishing micropillars from the worm, thus making it challenging to automate the analysis process. We address this problem by developing a technique to color the micropillars selectively. This enabled us to develop a semi-automated graphical user interface (GUI) for high throughput data extraction and analysis, reducing the analysis time for each worm to minutes. Moreover, increased contrast because of the color also delivered better images. Addition of color changed the Young‘s modulus of PDMS. Thus the dye-PDMS composite was characterized using hyper-elastic model. The micropillars were also calibrated using commercial force sensor. Analysis of forces exerted by wild type and mutant C. elegans moving on an agarose surface was performed. Wild type C. elegans exerted a total average force of 7.68 µN and an average force of ~1 µN on an individual pillar. We show that the middle of C. elegans exerts more force than its extremities. We find that C. elegans mutants with defective body wall muscles apply significantly lower force on individual pillars, while mutants defective in sensing externally applied mechanical forces still apply the same average force per pillar compared to wild type animals. Average forces applied per pillar are independent of the length, diameter, or cuticle stiffness of the animal. It was also observed that the motility of the worms with mechanosensation defects, lower cuticle stiffness, and body wall muscle defects was reduced with worms that have defective body wall muscle having the largest degree. Thus, we conclude that while reduced ability to apply forces affects the locomotion of the worm in the micropillar array, the reduced motility/locomotion may not indicate that the worm has reduced ability to apply forces on the micropillars. We also used the colored micropillar array for the first time to measure forces exerted by Drosophila larvae. Our device successfully captured the peristaltic rhythm of the body wall muscles of the larva and allowed us to measure the forces applied on each deflected pillar during this motion. Average force exerted by 1st instar wild type Drosophila larvae was measured to be ~ 1.5 µN per pillar. We demonstrated that a microjet of air can be used to apply forces in micro-Newton range. We developed a standalone system to generate a controlled air microjet. Microjet was generated using a controlled electromagnetic actuation of a diaphragm. With a nozzle diameter of 150 µm, the microjet diameter was maintained to a maximum of 1 mm at a distance of 5 mm from the nozzle. The force generated by the microjet was measured using a commercial force sensor to determine the velocity profile of the jet. Axial flow velocities of up to 25 m/s were obtained at distances as long as 6 mm. The microjet exerted a force up to 1 µN on a poly dimethyl siloxane (PDMS) micropillar (50 µm in diameter, 157 µm in height) and 415 µN on a PDMS membrane (3 mm in diameter, 28 µm thick). We also demonstrate that from a distance of 6 mm our microjet can exert a peak pressure of 187 Pa with a total force of about 84 µN on a flat surface with 8 V operating voltage. Next, we demonstrated that the response of C. elegans worms to the impinging air microjet is similar to the response evoked using a manual gentle touch. This contactless actuation tool avoids contamination and mechanical damage to the samples. Out of the cleanroom fabrication and robust design make this system cost effective and durable. Magnetic micropillars have been used as actuators. We fabricated magnetic micropillar arrays and designed actuation mechanisms using permanent magnet and a pulsed electromagnet. Force of about 19 µN was achievable using a permanent magnet actuation. In a pulsed electromagnetic field micropillar exerted a force of about 10 µN on a commercial force sensor. These techniques have promising applications when actuation needs to be controlled from long distances.
17

Inertial encoding mechanisms and flight dynamics of dipteran insects

Yarger, Alexandra Mead 02 June 2020 (has links)
No description available.
18

Membrane protein mechanotransduction : computational studies and analytics development

Dahl, Anna Caroline E. January 2014 (has links)
Membrane protein mechanotransduction is the altered function of an integral membrane protein in response to mechanical force. Such mechanosensors are found in all kingdoms of life, and increasing numbers of membrane proteins have been found to exhibit mechanosensitivity. How they mechanotransduce is an active research area and the topic of this thesis. The methodology employed is classical molecular dynamics (MD) simulations. MD systems are complex, and two programs were developed to reduce this apparent complexity in terms of both visual abstraction and statistical analysis. Bendix detects and visualises helices as cylinders that follow the helix axis, and quantifies helix distortion. The functionality of Bendix is demonstrated on the symporter Mhp1, where a state is identified that had hitherto only been proposed. InterQuant tracks, categorises and orders proximity between parts of an MD system. Results from multiple systems are statistically interrogated for reproducibility and significant differences at the resolution of protein chains, residues or atoms. Using these tools, the interaction between membrane and the Escherichia coli mechanosensitive channel of small conductance, MscS, is investigated. Results are presented for crystal structures captured in different states, one of which features electron density proposed to be lipid. MD results supports this hypothesis, and identify differential lipid interaction between closed and open states. It is concluded that propensity for lipid to leave for membrane bulk drives MscS state stability. In a subsequent study, MscS is opened by membrane surface tension for the first time in an MD setup. The gating mechanism of MscS is explored in terms of both membrane and protein deformation in response to membrane stretch. Using novel tension methodology and the longest MD simulations of MscS performed to date, a molecular basis for the Dashpot gating mechanism is proposed. Lipid emerges as an active structural element with the capacity to augment protein structure in the protein structure-function paradigm.
19

Candidate mechanosensitive transduction channels in Drosophila melanogaster / Kandidaten für den mechanosensitiven Transduktionskanal in Drosophila melanogaster

Effertz, Thomas 09 June 2011 (has links)
No description available.

Page generated in 0.0854 seconds