• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • Tagged with
  • 58
  • 58
  • 22
  • 16
  • 15
  • 13
  • 12
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

THE EFFECT OF PPARγ ACTIVATION BY PIOGLITAZONE ON THE LIPOPOLYSACCHARIDE-INDUCED PGE<sub>2</sub> AND NO PRODUCTION: POTENTIALUNDERLYING ALTERATION OF SIGNALING TRANSDUCTION

Xing, Bin 01 January 2008 (has links)
Microglia-mediated neuroinflammation plays an important role in the pathogenesis of Parkinson's disease (PD). Uncontrolled microglia activation produces major proinflammatory factors including cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) that may cause dopaminergic neurodegeneration. Peroxisome proliferator-activated receptor γ (PPARγ) agonist pioglitazone has potent antiinflammatory property. We hypothesize pioglitazone protects dopaminergic neuron from lipopolysaccharide (LPS)-induced neurotoxicity by interacting with relevant signal pathways, inhibiting microglial activation and decreasing inflammatory mediators. First, the neuroprotection of pioglitazone was explored. Second, the signaling transductions such as jun N-terminal kinase (JNK) and the interference with these pathways by pioglitazone were investigated. Third, the effect of pioglitazone on these pathways-mediated PGE2 / nitric oxide (NO) generation was investigated. Finally, the effect of PPARγ antagonist on the inhibition of PGE2 / NO by pioglitazone was explored. The results show that LPS neurotoxicity is microglia-dependent, and pioglitazone protects neurons against LPS insult possibly by suppressing LPS-induced microglia activation and proliferation. Second, pioglitazone protects neurons from COX-2 / PGE2 mediated neuronal loss by interfering with the NF-κB and JNK, in PPARγ-independent mechanisms. Third, pioglitazone significantly inhibits LPS-induced iNOS / NO production, and inhibition of LPS-induced iNOS protects neuron. Fourth, inhibition p38 MAPK reduces LPS-induced NO generation but no effect is found upon JNK inhibition, and pioglitazone inhibits p38 MAPK phosphorylation induced by LPS. In addition, pioglitazone increases PPARγ phosphorylation, followed by the increased PI3K/Akt phosphorylation. Nevertheless, inhibition of PI3K increases LPS-induced p38 MAPK phosphorylation. Inhibition of PI3K eliminates the inhibitive effect of pioglitazone on the LPS-induced NO production, suggesting that the inhibitive effect of pioglitazone on the LPS-induced iNOS and NO might be PI3K-dependent.
12

NIGROSTRIATAL DOPAMINE-NEURON FUNCTION FROM NEUROTROPHIC-LIKE PEPTIDE TREATMENT AND NEUROTROPHIC FACTOR DEPLETION

Littrell, Ofelia Meagan 01 January 2011 (has links)
Trophic factors have shown great promise in their potential to treat neurological disease. In particular, glial cell line-derived neurotrophic factor (GDNF) has been identified as a potent neurotrophic factor for midbrain dopamine (DA) neurons in the substantia nigra (SN), which lose function in Parkinson’s disease (PD). GDNF progressed to phase II clinical trials, which did not meet proposed endpoints. The large size and binding characteristics of GDNF have been suspected to contribute to some of the shortcomings of GDNF related to delivery to target brain regions. Smaller peptides derived from GDNF (Dopamine-Neuron Stimulating Peptides – DNSPs) have been recently investigated and appear to demonstrate trophic-like effects comparable to GDNF. In the described studies, a time course study was conducted to determine in vivo DA-release characteristics 1-, 2- and 4- weeks after peptide treatment. These studies determined the effects on DA terminals within striatal sub-regions using microelectrodes. A heterogeneous effect on striatal sub-regions was apparent with the maximum effect in the dorsal striatum – corresponding to terminals originating from the SN. Dysregulation of GDNF or GDNF signaling is believed to contribute to motor dysfunction in aging and PD. Thus, it is hypothesized that GDNF is necessary for the maintenance and function of neurons. To extend this line of investigation, in vivo functional measures (DA-release and -uptake) and behavioral and cellular alterations were investigated in a transgenic mouse model (Gdnf+/-) with reduced GDNF protein levels. The described studies determined that both DA-uptake and -release properties were altered in middle-aged Gdnf+/- mice with only modest reductions in DA neurochemical levels. GDNF levels in Gdnf+/- mice were restored to levels comparable to wild-type (WT) counterparts by treatment with GDNF. GDNF protein supplementation led to enhanced motor behavior and increased markers for DA neurons in the SN of Gdnf+/- mice. Gdnf+/- mice appeared to show a heightened sensitivity to GDNF treatment compared to WT counterparts. Overall, this body of work examines novel synthetic peptides with potential to enhance DA-neuron function and expands upon the current understanding of GDNF’s role in the nigrostriatal pathway.
13

ROLE OF REACTIVE OXYGEN SPECIES PEROXYNITRITE IN TRAUMATIC SPINAL CORD INJURY

Xiong, Yiqin 01 January 2008 (has links)
Peroxynitrite (PN, ONOO-), formed by nitric oxide radical (•NO) and superoxide radical (O2•-), plays an important role in post-traumatic oxidative damage. In the early work, we determined the temporal characteristics of PN-derived oxidative damage in a rat spinal cord injury (SCI) model. Our results showed 3-nitrotyrosine (3-NT), a specific marker for PN, rapidly accumulated at early time points (1 hr, 3 hrs), after when it plateaued and the high level was sustained to 1 week post injury. The co-localization of 3-NT and lipid peroxidation derived-4-HNE observed in immunohistochemistry indicates PN is involved in lipid peroxidative as well as protein nitrative damage. PN-oxidative damage exacerbates intracellular Ca2+ overload, which activates Ca2+ dependent calpain-mediated cytoskeletal protein (α-spectrin) degradation. The 145 kD fragments of α-spectrin (SBDP 145), which are specifically generated by calpain, increased dramatically as early as 1 hr after injury although the peak increase did not occur until 72 hrs post injury. The high level waned back toward sham level at one week post injury. We then carried out experiments to evaluate the beneficial effects of tempol, a scavenger of PN-derived radicals, following SCI. Three pathological events including PN-induced oxidative damage, mitochondrial dysfunction and cytoskeletal degradation were investigated. Immunoblotting and immunohistochemical studies indicated PN-mediated oxidative damage including protein nitration, protein oxidation and lipid peroxidation, were all reduced by a single dose of tempol (300mg/kg, i.p) after SCI. Spinal cord (SC) mitochondrial dysfunction in terms of the respiratory control ratio (RCR) significantly improved by both 150 mg/kg and 300 mg/kg tempol treatments. Moreover, calpain-mediated proteolysis was significantly decreased by tempol, with greater effects on calpain-specific SBDP 145 observed. Direct PN-scavenging effect of tempol was confirmed in vitro. Exposure of healthy SC mitochondria to SIN-1, a PN donor in vitro, impaired mitochondrial respiration in a dose-dependent manner. Tempol was able to protect mitochondria against SIN-1-induced damage by improving mitochondrial function and decreasing mitochondrial 3-NT formation. These findings strongly support the concept that PN is a crucial player in the secondary damage following SCI. And tempol, by scavenging PN-induced free radicals, provides a promising pharmocotherapeutic strategy for treating acute SCI.
14

THE UNDERLYING MECHANISM(S) OF FASTING INDUCED NEUROPROTECTION AFTER MODERATE TRAUMATIC BRAIN INJURY

Davis, Laurie Michelle Helene 01 January 2008 (has links)
Traumatic brain injury (TBI) is becoming a national epidemic, as it accounts for 1.5 million cases each year. This disorder affects primarily the young population and elderly. Currently, there is no treatment for TBI, which means that ~2% of the U.S. population is currently living with prolonged neurological damage and dysfunction. Recently, there have been many studies showing that TBI negatively impacts mitochondrial function. It has been proposed that in order to save the cell from destruction mitochondrial function must be preserved. The ketogenic diet, originally designed to mimic fasting physiology, is effective in treating epilepsy. Therefore, we have used fasting as a post injury treatment and attempted to elucidate its underlying mechanism. 24 hours of fasting after a moderate TBI increased tissue sparing, cognitive recovery, improved mitochondrial function, and decreased mitochondrial biomarkers of injury. Fasting results in hypoglycemia, the production of ketones, and the upregulation of free fatty acids (FFA). As such, we investigated the neuroprotective effect of hypoglycemia in the absence of fasting through insulin administration. Insulin administration was not neuroprotective and increased mortality in some treatment groups. However, ketone administration resulted in increased tissue sparing. Also, reduced reactive oxygen species (ROS) production, increased the efficiency of NADH utilization, and increased respiratory function. FFAs and uncoupling proteins (UCP) have been implicated in an endogenously regulated anti-ROS mechanism. FFAs of various chain lengths and saturation were screened for their ability to activate UCP mediated mitochondrial respiration and attenuate ROS production. We also measured FFA levels in serum, brain, and CSF after a 24 hour fast. We also used UCP2 transgenic overexpressing and knockout mice in our CCI injury model, which showed UCP2 overexpression increased tissue sparing, however UCP2 deficient mice did not show a decrease in tissue sparing, compared with their wild type littermates. Together our results indicate that post injury initiated fasting is neuroprotective and that this treatment is able to preserve mitochondrial function. Our work also indicates ketones and UCPs may be working together to preserve mitochondrial and cellular function in a concerted mechanism, and that this cooperative system is the underlying mechanism of fasting induced neuroprotection.
15

DISRUPTIONS IN THE REGULATION OF EXTRACELLULAR GLUTAMATE IN THE RAT CENTRAL NERVOUS SYSTEM AFTER DIFFUSE BRAIN INJURY

Hinzman, Jason Michael 01 January 2012 (has links)
Glutamate, the predominant excitatory neurotransmitter in the central nervous system, is involved in almost all aspects of neurological function including cognition, motor function, memory, learning, decision making, and neuronal plasticity. For normal neurological function, glutamate signaling must be properly regulated. Disrupted glutamate regulation plays a pivotal role in the acute pathophysiology of traumatic brain injury (TBI), disrupting neuronal signaling, initiating secondary injury cascades, and producing excitotoxicity. Increases in extracellular glutamate have been correlated with unfavorable outcomes in TBI survivors, emphasizing the importance of glutamate regulation. The aim of this thesis was to examine disruptions in the regulation of extracellular glutamate after experimental TBI. In these studies, we used glutamate-sensitive microelectrode arrays (MEAs) to examine the regulation of extracellular glutamate two days after diffuse brain injury. First, we examined which brain regions were vulnerable to post-traumatic increases in extracellular glutamate. We detected significant increases in extracellular glutamate in the dentate gyrus and striatum, which correlated to the severity of brain injury. Second, we examined the regulation of extracellular glutamate by neurons and glia to determine the mechanisms responsible for post-traumatic increases in extracellular glutamate. In the striatum of brain-injured rats, we detected significant disruptions in release of glutamate by neurons and significant decreases in the removal of glutamate from the extracellular space by glia. Third, we examined if a novel therapeutic strategy, a viral-vector mediated gene delivery approach, could improve the regulation of extracellular glutamate. Infusion of an adeno-associated virus expressing a glutamate transporter into the rat striatum produced significant improvements in glutamate clearance, identifying a novel strategy to reduce excitotoxicity. Lastly, we examined the translational potential of MEAs as novel neuromonitoring device for clinical TBI research. Overall, these studies have demonstrated the translational potential of MEAs to aid in the diagnosis and treatment of TBI survivors.
16

ROLE OF CYCLOPHILIN D IN SECONDARY SPINAL CORD AND BRAIN INJURY

Clark, Jordan Mills 01 January 2009 (has links)
In the hours and days following acute CNS injury, a secondary wave of events is initiated that exacerbate spinal tissue damage and neuronal cell death. A potential mechanism driving these secondary events is opening of the mitochondrial permeability transition pore (mPTP) and subsequent release of several cell death proteins. Previous studies have shown that inhibition of cyclophilin D(CypD), the key regulating component in mPTP opening, was protective against insults that induce necrotic cell death. We therefore hypothesized that CypD-null mice would show improved functional and pathological outcomes following spinal cord injury (SCI) and traumatic brain injury (TBI). Moderate and severe spinal contusion was produced in wild-type (WT) and CypD-null mice at the T-10 level using the Infinite Horizon impactor. Changes in locomotor function were evaluated using the Basso Mouse Scale (BMS) at 3 days post-injury followed by weekly testing for 4 weeks. Histological assessment of tissue sparing and lesion volume was performed 4 weeks post SCI. Calpain activity, measured by calpain-mediated spectrin degradation, was assessed in moderate injury only by western blot 24 hours post SCI. Results showed that following moderate SCI, CypD-null mice had no significant improvement in locomotor recovery or tissue sparing compared to wild-type mice. Following severe SCI, CypD-null mice showed significantly lower locomotor recovery and decreased tissue sparing compared to WT mice. Calpain-mediated spectrin degradation was not significantly reduced in CypD-null mice compared to WT mice 24h post moderate SCI. The lack of protective effects in CypD-null mice suggests that more dominant mechanisms are involved in the pathology of SCI. In addition, CypD may have a pro survival role that is dependent on the severity of the spinal cord injury.
17

GLUTAMATE REGULATION IN THE HIPPOCAMPAL TRISYNAPTIC PATHWAY IN AGING AND STATUS EPILEPTICUS

Stephens, Michelle Lee 01 January 2009 (has links)
A positive correlation exists between increasing age and the incidence of hippocampal-associated dysfunction and disease. Normal L-glutamate neurotransmission is absolutely critical for hippocampal function, while abnormal glutamate neurotransmission has been implicated in many neurodegenerative diseases. Previous studies, overwhelmingly utilizing ex vivo methods, have filled the literature with contradicting reports about hippocampal glutamate regulation during aging. For our studies, enzyme-based ceramic microelectrode arrays (MEA) were used for rapid (2 Hz) measurements of extracellular glutamate in the hippocampal trisynaptic pathway of young (3-6 months), late-middle aged (18 mo.) and aged (24 mo.) urethane-anesthetized Fischer 344 rats. Compared to young animals, glutamate terminals in cornu ammonis 3 (CA3) showed diminished potassium-evoked glutamate release in aged rats. In late-middle aged animals, terminals in the dentate gyrus (DG) showed increased evoked release compared to young rats. The aged DG demonstrated an increased glutamate clearance capacity, indicating a possible age-related compensation to deal with the increased glutamate release that occurred in late-middle age. To investigate the impact of changes in glutamate regulation on the expression of a disease process, we modified the MEA technology to allow recordings in unanesthetized rats. These studies permitted us to measure glutamate regulation in the hippocampal formation without anesthetic effects, which showed a significant increase in basal glutamatergic tone during aging. Status epilepticus was induced by local application of 4-aminopyridine. Realtime glutamate measurements allowed us to capture never-before-seen spontaneous and highly rhythmic glutamate release events during status epilepticus. A significant correlation between pre-status tonic glutamate and the quantity of status epilepticus-associated convulsions and glutamate release events was determined. Taken together, this body of work identifies the DG and CA3 as the loci of age-associated glutamate dysregulation in the hippocampus, and establishes elevated levels of glutamate as a key factor controlling severity of status epilepticus in aged animals. Based upon the potential ability to discriminate brain areas experiencing seizure (i.e. synchronized spontaneous glutamate release) from areas not, we have initiated the development of a MEA for human use during temporal lobe resection surgery. The final studies presented here document the development and testing of a human microelectrode array prototype in non-human primates.
18

CHARACTERIZATION AND OPTIMIZATION OF MICROELECTRODE ARRAYS FOR GLUTAMATE MEASUREMENTS IN THE RAT HIPPOCAMPUS

Talauliker, Pooja Mahendra 01 January 2010 (has links)
An overarching goal of the Gerhardt laboratory is the development of an implantable neural device that allows for long-term glutamate recordings in the hippocampus. Proper L-glutamate regulation is essential for hippocampal function, while glutamate dysregulation is implicated in many neurodegenerative diseases. Direct evidence for subregional glutamate regulation is lacking in previous in vivo studies because of limitations in the spatio-temporal resolution of conventional experimental techniques. We used novel enzyme-coated microelectrode arrays (MEAs) for rapid measurements (2Hz) of extracellular glutamate in urethane-anesthetized rats. Potassium-evoked glutamate release was highest in the cornu ammonis 1 (CA1) subregion and lowest in the cornu ammonis 3 (CA3). In the dentate gyrus (DG), evoked-glutamate release was diminished at a higher potassium concentration but demonstrated faster release kinetics. These studies are the first to show subregion specific regulation of glutamate release in the hippocampus. To allow for in vivo glutamate measurements in awake rats, we have adapted our MEAs for chronic use. Resting glutamate measurements were obtained up to six days post-implantation but recordings were unreliable at later time points. To determine the cause(s) for recording failure, a detailed investigation of MEA surface characteristics was conducted. Scanning electron microscopy and atomic force microscopy showed that PT sites have unique surface chemistry, a microwell geometry and nanometer-sized features, all of which appear to be favorable for high sensitivity recordings. Accordingly, studies were initiated to improve enzyme coatings using a computer-controlled microprinting system (Microfab Technologies, Plano, TX). Preliminary testing showed that microprinting allowed greater control over the coating process and produced MEAs that met our performance criteria. Our final studies investigated the effects of chronic MEA implantation. Immunohistochemical analysis showed that the MEA produced minimal damage in the hippocampus at all time points from 1 day to 6 months. Additionally, tissue attachment to the MEA surface was minimal. Taken together with previous electrophysiology data supporting that MEAs are functional up to six months, these studies established that our chronic MEAs technology is capable of maintaining a brain-device interface that is both functional and biocompatible for extended periods of time.
19

AGE MAY BE HAZARDOUS TO OUTCOME FOLLOWING TRAUMATIC BRAIN INJURY: THE MITOCHONDRIAL CONNECTION

Gilmer, Lesley Knight 01 January 2009 (has links)
Older individuals sustaining traumatic brain injury (TBI) experience a much higher incidence of morbidity and mortality. This age-related exacerbated response to neurological insult has been demonstrated experimentally in aged animals, which can serve as a model to combat this devastating clinical problem. The reasons for this worse initial response are unknown but may be related to age-related changes in mitochondrial respiration. Evidence is shown that mitochondrial dysfunction occurs early following traumatic brain injury (TBI), persists long after the initial insult, and is severitydependent. Synaptic and extrasynaptic mitochondrial fractions display distinct respiration capacities, stressing the importance to analyze these fractions separately. Sprague- Dawley and Fischer 344 rats, two commonly used strains used in TBI and aging research, were found to show very similar respiration profiles, indicating respiration data are not strain dependent. Neither synaptic nor extrasynaptic mitochondrial respiration significantly declined with age in naïve animals. Only the synaptic fraction displayed significant age-related increases in oxidative damage, measured by 3-nitrotyrosine (3- NT), 4-hydroxynonenal (4-HNE), and protein carbonyls (PC). Alterations in respiration with age appear to be more subtle than previously thought. Subtle declines in respiration and elevated levels of oxidative damage may not to be sufficient to produce detectable deficits until the system is challenged. Following TBI, synaptic mitochondria exhibit dysfunction that increased significantly with age at injury, evident in lower respiratory control ratio (RCR) values and declines in ATP production rates. Furthermore, synaptic mitochondria displayed increased levels of oxidative damage with age and injury, while extrasynaptic mitochondria only displayed significant elevations following the insult. Age-related synaptic mitochondrial dysfunction following TBI may contribute to an exacerbated response in the elderly population.
20

Axon Initial Segment Stability in Multiple Sclerosis

Thummala, Suneel K 01 January 2015 (has links)
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system characterized by inflammation and demyelination. In addition to these hallmark features, MS also presents with axonal pathology, which is likely responsible for the signs and symptoms of the disease. Although prominent in MS, axonal pathology is frequently considered a consequence of demyelination and not a primary event. This conclusion is consistent with demyelination inducing the loss of specific axonal domains, known as the nodes of Ranvier that are responsible for the propagation of action potentials along the axon. In contrast, we propose that axonal pathology associated with MS is a primary pathological event, independent of demyelination, and not a product of it. In support of our hypothesis, we have analyzed a different axonal domain known as the axon initial segment. Whereas a single axon has numerous nodes of Ranvier uniformly distributed along the axon, each axon contains only a single axon initial segment that is positioned immediately distal to the neuronal cell body. The axon initial segment is responsible for action potential generation and modulation, and hence is essential for normal neuronal function. Background studies conducted by our lab, employing a murine model of demyelination/remyelination, revealed no correlation between axon initial segment stability and myelin integrity. Here we investigate the fate of the axon initial segment in human multiple sclerosis. While not statistically significant, we provide data demonstrating an apparent 40% reduction in AIS numbers in MS. We further provide qualitative evidence that AIS integrity in MS is not dependent on myelination suggestive that axonal pathology may be a primary event in MS, independent of demyelination. Our current findings are intriguing, but unfortunately this study is underpowered, and more samples will be required to determine whether this apparent reduction is statistically significant.

Page generated in 0.0923 seconds