• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 7
  • 3
  • 1
  • Tagged with
  • 30
  • 12
  • 10
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Potentiel thérapeutique de l'activation du récepteur nucléaire PPARgamma dans la myélofibrose / Therapeutic Potential of Activation of the Nuclear Receptor PPARgamma Pathway in Myelofibrosis

Lambert, Juliette 16 December 2019 (has links)
La myélofibrose primitive (MFP) est un néoplasme myéloprolifératif (NMP) classique BCR-ABL négatif associé à une forte altération de la qualité de vie et à une augmentation de la mortalité. Les traitements conventionnels réduisent les symptômes mais ont peu d’effet sur l’histoire naturelle de la maladie. La MFP résulte d’interactions complexes entre le développement du clone hématopoïétique malin, l’installation d’un contexte inflammatoire et le remodelage du microenvironnement médullaire. Chacun de ces axes est une cible thérapeutique potentielle. Dans ce travail, nous avons évalué le potentiel thérapeutique de l’activation de PPARγ dans trois modèles murins de myélofibrose et nous montrons que les ligands de PPARγ permettent d’améliorer les paramètres hématologiques et histologiques en rapport avec l’installation du phénotype de myélofibrose. Chacun des axes de la physiopathologie a ensuite été exploré. Les ligands de PPARγ ont une action anti-proliférative sur le clone malin, tant dans les modèles murins de NMPs que dans les cellules JAK2V617F de lignée et dans les progéniteurs hématopoïétiques issus de patients atteints de NMPs. Le traitement atténue également l’hyperleucocytose associée au phénotype inflammatoire des NMPs et modifie la transcription de gènes de l’inflammation. Enfin, les ligands de PPARγ ont un effet protecteur sur le stroma médullaire, dépendant de la capacité de PPARγ à contrecarrer la voie de signalisation du TGF-β1, cytokine majeure du développement de la fibrose médullaire, par déplacement du cofacteur de transcription p300 de la voie du TGF-β1 vers la voie PPARγ. Par son action sur les trois composantes de la physiopathologie, l’activation de PPARγ constitue une cible thérapeutique pertinente dans la prise en charge de la MFP. / Primary myelofibrosis (PMF) is a non BCR-ABL myeloproliferative neoplasm (MPN) associated with poor quality of life and reduced survival. Current treatments are mainly symptomatic and have little effect on the natural history of the disease. PMF results from complex interactions between the emergence of a hematopoietic malignant clone, an inflammatory context and the remodeling of the bone marrow (BM) microenvironment. Each of these axes is a potential therapeutic target. Here, we evaluated the therapeutic potential of PPARγ ligands in three murine models of myelofibrosis and we showed that PPARγ ligands improve hematological and histological changes related to myelofibrosis phenotype. Then, we explored each axis of the pathophysiology. We showed that PPARγ ligands have an anti-proliferative effect and limit the proliferation of the malignant clone in murine models of MPNs, in JAK2V617F cell lines and in hematopoietic progenitors from MPNs patients. PPARγ ligands also decrease leukocytosis related to the inflammatory phenotype of MPNs and modify the transcription of inflammatory genes. Finally, we demonstrated that PPARγ ligands have a protective effect on BM stroma. They counteract the signaling pathway of TGF-β1, a major cytokine in BM fibrosis development, by moving the p300 cofactor of transcription from the TGF-β1 pathway to the PPARγ pathway. By its action on the three components of the pathophysiology, activation of PPARγ pathway is a relevant therapeutic target in PMF.
2

The mechanism of Dexamethasone- and Pioglitazone-Induced Adipogenesis in Bone Marrow Stromal Cell: studies on the differentiation of osteoblast and the mechanism of osteoporosis

Hung, Shao-Hung 13 February 2008 (has links)
Osteoporosis is defined as a skeletal disorder characterized by low bone mass and microarchitectural deterioration of bone tissue, leading to enhanced bone fragility and a consequent increase in fracture risk. Osteoporosis is well known increasing with age. The number and size of marrow adipocytes increase in a linear manner with age. Early histomorphometric observations suggested that the consequence of the adipose replacement of the marrow functional cell population was a cause of osteoporosis. The replacement of functional cells in the marrow by fat cells is common in several pathological study of osteoporosis. All these evidences clearly demonstrate the reciprocal relationship between osteoblast and adipocyte differentiation. The trans-differentiation of osteoblast to adipocyte is an important mechanism of pathogenesis of osteoporosis. Several reports have indicated that the long-term use of steroids could induce osteonecrosis and osteoporosis. Using a mouse pluripotent mesenchymal cell, D1, as a model, we have demonstrated that dexamethasone, a glucocorticoid, can induce adipogenesis. Peroxisome proliferator-activated receptors-£^ (PPAR£^) plays a critical role in glucose and lipid metabolism, macrophage function, and adipogenesis. It is a nuclear hormone receptor, activated through ligand binding, which results in allosteric changes in receptor conformation, recruitment of coactivators, assembly of a transcriptional complex, there regulates gene expression. Thiazolidinedione (TZD) is one of the agonist of PPAR£^ receptor which has been a medication for diabetic mellitus for years. Treatment with TZDs leads to selective accumulation of subcutaneous adipose tissue. We examined whether adipogenesis induction in D1 cells is initiated by activation of peroxisome proliferator-activated receptor-£^. The results revealed that pioglitazone induces adipogenesis in D1 cells in dosedependent manner and decreases alkaline phosphatase activity in D1 cells. Interestingly, this adipogenesis was not blocked by bisphenol A diglycidyl ether, a peroxisome proliferator-activated receptor-£^ antagonist. A peroxisome proliferator-activated receptor-£^-mediated reporter gene assay showed no response to pioglitazone. We then asked whether dexamethasone-induced adipogenesis can be repressed by mifepristone (RU486), an antagonist of glucocorticoid receptor. The results disclosed that mifepristone cannot counteract dexamethasone-induced adipogenesis, and mifepristone itself induced adipogenesis in D1 cells. Moreover, glucocorticoid receptor-mediated reporter gene assay was not responsive to dexamethasone or mifepristone. We concluded that the adipogenesis induced by pioglitazone and dexamethasone in D1 cells may not occur via a peroxisome proliferator-activated receptor-£^ and glucocorticoid receptor pathway. These results suggested that the adipogenesis induced by glucocorticoids and pioglitazone is directed by a multiple cell signaling pathway. Finally, data from microarray analysis confirmed this adipogenesis pathway, as several adipogenesis-related genes are highly provoked by DEX. We found that the expressions of several adipogenesis-related genes are highly provoked by this agent. Our studies suggest that the adipocyte conversion of bone marrow stromal cells may be the mechanism of bone loss caused by pioglitazone. Considering its widespread clinical use, the detrimental skeletal effects of pioglitazone should be closely monitored.
3

Bioenergetic Abnormalities in Schizophrenia

Sullivan, Courtney R. 26 July 2018 (has links)
No description available.
4

A pharmacokinetic and pharmacodynamic study of pioglitazone in a model of induced insulin resistance in normal horses

Wearn, Jamie Macquarie 14 July 2010 (has links)
Equine Metabolic Syndrome (EMS) is a unique condition of horses characterized by adiposity, insulin resistance, and an increased risk of laminitis. Reducing insulin resistance may decrease the incidence of laminitis in horses with EMS. Pioglitazone, a thiazolidinedione class of anti-diabetic drug, has proven efficacy in humans with type 2 diabetes, a syndrome of insulin resistance sharing some similarities with EMS. The ability of pioglitazone to influence insulin sensitivity in an endotoxin-infusion model of induced insulin resistance was investigated. Our hypothesis was that piogltiazone would preserve insulin sensitivity in a model of induced insulin resistance. The specific aims were to investigate the pharmacokinetics and pharmacodynamics of pioglitazone in an endotoxin infusion model of insulin resistance. 16 normal adult horses were enrolled. Pioglitazone was administered to 8 horses (1 mg/kg, PO, q24h) for 14 days, and 8 horses served as their controls. Liquid chromatography with tandem mass spectroscopy was used to quantitate plasma concentration of pioglitazone. A frequently sampled intravenous glucose tolerance test with minimum model analysis was used to compare indices of glucose and insulin dynamics prior to, and following, endotoxin infusion in horses treated with pioglitazone and their controls. Parameters of clinical examination and lipid metabolism were compared prior to, and following, endotoxin administration. Pioglitazone administered orally at 1 mg/kg q 24 h resulted in plasma concentrations lower, and more variable, compared to those considered therapeutic in humans. No significant effect of drug treatment was detected on clinical parameters or indices of insulin dynamics or lipid homeostasis following endotoxin challenge. / Master of Science
5

Bioequivalence study of pioglitazone tablets in Thai healthy volunteers /

Khin Myo Oo, Korbtham Sathirakul, January 2007 (has links) (PDF)
Thesis (M.Sc. (Pharmaceutics))--Mahidol University, 2007. / LICL has E-Thesis 0025 ; please contact computer services.
6

THE EFFECT OF PPARγ ACTIVATION BY PIOGLITAZONE ON THE LIPOPOLYSACCHARIDE-INDUCED PGE<sub>2</sub> AND NO PRODUCTION: POTENTIALUNDERLYING ALTERATION OF SIGNALING TRANSDUCTION

Xing, Bin 01 January 2008 (has links)
Microglia-mediated neuroinflammation plays an important role in the pathogenesis of Parkinson's disease (PD). Uncontrolled microglia activation produces major proinflammatory factors including cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) that may cause dopaminergic neurodegeneration. Peroxisome proliferator-activated receptor γ (PPARγ) agonist pioglitazone has potent antiinflammatory property. We hypothesize pioglitazone protects dopaminergic neuron from lipopolysaccharide (LPS)-induced neurotoxicity by interacting with relevant signal pathways, inhibiting microglial activation and decreasing inflammatory mediators. First, the neuroprotection of pioglitazone was explored. Second, the signaling transductions such as jun N-terminal kinase (JNK) and the interference with these pathways by pioglitazone were investigated. Third, the effect of pioglitazone on these pathways-mediated PGE2 / nitric oxide (NO) generation was investigated. Finally, the effect of PPARγ antagonist on the inhibition of PGE2 / NO by pioglitazone was explored. The results show that LPS neurotoxicity is microglia-dependent, and pioglitazone protects neurons against LPS insult possibly by suppressing LPS-induced microglia activation and proliferation. Second, pioglitazone protects neurons from COX-2 / PGE2 mediated neuronal loss by interfering with the NF-κB and JNK, in PPARγ-independent mechanisms. Third, pioglitazone significantly inhibits LPS-induced iNOS / NO production, and inhibition of LPS-induced iNOS protects neuron. Fourth, inhibition p38 MAPK reduces LPS-induced NO generation but no effect is found upon JNK inhibition, and pioglitazone inhibits p38 MAPK phosphorylation induced by LPS. In addition, pioglitazone increases PPARγ phosphorylation, followed by the increased PI3K/Akt phosphorylation. Nevertheless, inhibition of PI3K increases LPS-induced p38 MAPK phosphorylation. Inhibition of PI3K eliminates the inhibitive effect of pioglitazone on the LPS-induced NO production, suggesting that the inhibitive effect of pioglitazone on the LPS-induced iNOS and NO might be PI3K-dependent.
7

NOVEL TARGETS FOR MITOCHONDRIAL DYSFUNCTION FOLLOWING TRAUMATIC BRAIN INJURY

Yonutas, Heather M. 01 January 2016 (has links)
Mitochondrial dysfunction is a phenomenon observed in models of Traumatic Brain Injury (TBI). Loss of mitochondrial bioenergetics can result in diminished cellular homeostasis leading to cellular dysfunction and possible cellular death. Consequently, the resultant tissue damage can manifest as functional deficits and/or disease states. Therapeutic strategies to target this mitochondrial dysfunction have been investigated for models TBI and have shown promising effects. For this project, we tested the hypothesis that mitoNEET, a novel mitochondrial membrane protein, is a target for pioglitazone mediated neuroprotection. To test this, we used a severe Controlled Cortical Impact (CCI) injury model in mitoNEET null and wild-type mice. We then dosed these animals with pioglitazone or NL-1, which is a compound that has a similar structure to pioglitazone allowing us to hone in one the importance of mitoNEET binding. Wild-type animals treated with the mitoNEET ligands, both pioglitazone and NL-1, had improved mitochondrial function, tissue sparing and functional recovery, compared to mitoNEET null animals. In addition to this specific hypothesis tested, our experiments provided insight casting doubt on the central dogma that mitochondrial dysfunction following TBI is the result of vast oxidative damage and consequential irreversible mitochondrial loss. The data from these studies show that when mitoNEET is targeted with pioglitazone at 12 hours’ post-injury, mitochondrial dysfunction can be reversed. Additionally, when bypassing proteins upstream of Complex I with an alternative biofuel, such as beta-hydroxybuterate (BHB), TBI related mitochondrial dysfunction is once again reversed. This leads to novel hypothesis for future work which posits mitoNEET as a redox sensitive switch; when mitoNEET senses changes in redox, as seen in TBI, it inhibits mitochondrial respiration. When targeted with an agonist/ligand or bypassed with a biofuel TBI mitochondrial dysfunction can be reversed. These studies support the role of mitoNEET in the neuropathological sequelae of brain injury, supporting mitoNEET as a crucial target for pioglitazone mediated neuroprotection following TBI. Lastly, these studies propose a mechanism of TBI related mitochondrial dysfunction which can reversed with pharmacological agents.
8

TRICHLOROETHYLENE EXPOSURE AND TRAUMATIC BRAIN INJURY INTERACT AND PRODUCE DUAL INJURY BASED PATHOLOGY AND PIOGLITAZONE CAN ATTENUATE DEFICITS FOLLOWING TRAUMATIC BRAIN INJURY

Sauerbeck, Andrew David 01 January 2011 (has links)
The development of Parkinson's disease (PD) in humans has been linked to genetic and environmental factors for many years. However, finding common single insults which can produce pathology in humans has proved difficult. Exposure to trichloroethylene (TCE) or traumatic brain injury (TBI) has been shown to be linked to PD and it has also been proposed that multiple insults may be needed for disease development. The present studies show that exposure to TCE prior to a TBI can result in pathology similar to early PD and that the interaction of both insults is required for impairment in behavioral function, and cell loss. Following exposure to TCE for 2 weeks there is a 75% impairment in mitochondrial function but it has yet to be shown if the addition of a TBI can make this worse. If the exposure to TCE is reduced to 1 week and combined with TBI a 50% reduction in mitochondrial function is observed following the dual injury which requires both insults. These studies provide further support for the hypothesis that PD may result from a multifactorial mechanism. It had been established that regional differences exist in mitochondrial function across brain regions. The present studies indicate that previous findings are not likely to be the result of differences in individual mitochondria isolated from the cortex, striatum, and hippocampus. Further analysis of the effect of mitochondrial inhibitors on enzyme activity and oxygen consumption reveal that the different regions of the brain are similarly affected by the inhibitors. These results suggest that findings from previous studies indicating regionally specific deficits following systemic toxin exposure, such as with TCE, are not the result of regional differences in the individual mitochondria. Given that TBI results in significant dysfunction, finding effective therapeutics for TBI will provide substantial benefits to individuals suffering an insult. Treatment with Pioglitazone following TBI reduced mitochondrial dysfunction, cognitive impairment, cortical tissue loss, and inflammation. These findings provide initial evidence that treatment with Pioglitazone may be an effective intervention for TBI.
9

Auswirkungen des PPARγ-Agonisten Pioglitazon auf Peroxisomen des Gehirns im X-ALD-Mausmodell / Effects of the PPARγ agonist Pioglitazone on peroxisomes of the brain in a X-ALD mouse model

Sinnig, Kirstin 19 June 2017 (has links)
No description available.
10

Use of Insulin Sensitizers as a Novel Treatment for Major Depressive Disorder: A Pilot Study of Pioglitazone for Major Depression Accompanied by Abdominal Obesity

Kemp, David E. January 2010 (has links)
No description available.

Page generated in 0.0483 seconds