• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 8
  • 3
  • 1
  • Tagged with
  • 43
  • 43
  • 9
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mitochondrial proton pumping

Price, B. D. January 1984 (has links)
No description available.
2

Effects of Resistance Training on aged Skeletal Muscle and Mitochondrial Function

Flack, Kyle 23 January 2014 (has links)
With the aging of the baby boom population and an increased life expectancy, individuals aged 65 years and older are the fastest growing segment of our population. Aging brings about changes in skeletal muscle such as reduced muscle strength and mass, as well as cellular deficits such as increased production of reactive oxygen species (ROS), and mitochondrial DNA (MtDNA) deletions and mutations. Muscle mass declines at a rate of 1-2% each year after the age of 50, leading to muscle weakness, functional impairments, loss of independence, and an increase in falls. Additional declines in muscle mass and reduced muscle strength may result in a lower resting metabolic rate, reduced lipid oxidative capacity, increased adiposity, and insulin resistance. The rising number of individuals aged 65+ will increase demands on health care and health care costs, possibly leading to inadequate public resources and less care for the aged. This large societal impact, coupled with the aging of our population, suggests a clear need for methods that will improve the aging phenotype to enhance functionality, quality of life, and overall health for our aging population. This investigation aspires to delve into a relatively unexplored area of aging research and evaluate potential means that could help improve the aging phenotype. The associated mitochondrial impairments, mitochondrial mediated apoptosis, and mitochondrial DNA (MtDNA) deletions and mutations that accompany aging lead to a decline in physical fitness and oxidative capacity, and exercise has been shown to reverse or help prevent many of these disturbances. Resistance exercise training (RT) is currently the most effective known strategy to stimulate skeletal muscle hypertrophy and increase strength. Strength gains after RT lead to an improvement in activities of daily living and quality of life. There is some evidence suggesting that RT may lead to increased antioxidant enzyme capacity, decreased ROS production and increased electron transport chain (ETC) function in older individuals. The present study will lay a foundation for future research and further developments in the area of RT, mitochondrial function and aging. / Ph. D.
3

The effect of cardiolipin synthase deficiency on the mitochondrial function and barrier properties of human cerebral capillary endothelial cells

Nguyen, Hieu Thi Minh 04 1900 (has links)
The blood brain barrier (BBB), formed by endothelial cells lining the lumen of the brain capillaries, is a restrictively permeable interface that only allows transport of specific compounds into the brain. Cardiolipin (CL) is a mitochondrial- specific phospholipid known to be required for the activity and integrity of the respiratory chain. The current study examined the role of cardiolipin in maintaining an optimal mitochondrial function that may be necessary to support the barrier properties of the brain microvessel endothelial cells (BMECs). Endothelial cells have been suggested to obtain most of their energy through an-aerobic glycolysis based on studies of cells that were obtained from the peripheral vasculatures. However, here, we showed that the adult human brain capillary endothelial cell line (hCMEC/D3) appeared to produce ~60% of their basal ATP requirement through mitochondrial oxidative phosphorylation. In addition, RNAi mediated knockdown of the CL biosynthetic enzyme cardiolipin synthase (CLS), although did not grossly affect the mitochondrial coupling efficiency of the hCMEC/D3 cells, did seem to reduce their ability to increase their mitochondrial function under conditions of increased demand. Furthermore, the knockdown appeared to have acted as a metabolic switch causing the hCMEC/D3 cells to become more dependent on glycolysis. These cells also showed increase in [3H]-2-deoxyglucose uptake under a low glucose availability condition, which might have served as a mechanism to compensate for their reduced energy production efficiency. Interestingly, the increase in glucose uptake appeared correlated to an increase in [3H]-2-deoxyglucose glucose transport across the knockdown confluent hCMEC/D3 monolayers grown on Transwell® plates, which was used in our study as an in vitro model for the human BBB. This suggests that changes in the brain endothelial energy status may play a role in regulating glucose transport across the BBB. These observations, perhaps, also explain why the brain capillary endothelial cells were previously observed to possess higher mitochondrial content than those coming from non-BBB regions (Oldendorf et al. 1977).
4

The effect of different ozone concentrations on white blood cell energy homeostasis / Lissinda H. du Plessis

Du Plessis, Lissinda Hester January 2006 (has links)
Ozone therapy is an alternative form of therapy that has gained attention in the last couple of years. It is believed that O3 may exert a stimulatory effect on the antioxidant defence and immune systems and may therefore be effective in the treatment of ischemic disorders. diabetes mellitus. AIDS and other diseases. On the other hand. it is well known that O3 is a reactive molecule that is toxic to the pulmonary system. Therefore. there remains scepticism regarding its use as a form of therapy. In order to shed some light on this. the effects of ozone autohemotherapy (O3-AHT) on the energy homeostasis of white blood cells were investigated. The possible protective effects of the plasma antioxidant defence system during O3-AHT, were also investigated. Venous blood from six apparently healthy human donors was collected in heparin. In one aliquot a precise volume of blood was mixed with an equal volume of O2/O3 gas mixture containing 20 or 80 μg/ml O3 for 20 minutes. In the other aliquot, the plasma was washed out and the cells resuspended in a buffered phosphate solution. The buffered blood cells were treated with the same concentrations of O3. Control samples was either not treated or treated with a corresponding volume of O2 . Various biochemical analyses were done on the whole blood and buffered cells to determine the oxidant/antioxidant status, cell viability, apoptosis and mitochondrial function. The higher concentration of O3 increased oxidative stress and caused death of white blood cells. Antioxidant enzyme (catalase, glutathione reductase and glutathione peroxidase) activity and the plasma antioxidant capacity decreased, whereas superoxide dismutase levels increased slightly. Exposure to O3 also increased caspase 3/7 activity. A decrease in mitochondrial function was measured by a decrease in ATP levels and an increase in NADH/NAD+ ratio. Complex IV of the respiratory chain was almost completely inhibited by both O3 concentrations. These results indicated that the death of white blood cells was probably through apoptosis. These effects were more evident in the absence of plasma antioxidants. Therefore. high concentrations of O3 were damaging to the cells, but this effect was lessened by antioxidants present in plasma. In view of the results, the use of O3 as a therapy needs to be reconsidered. / Thesis (Ph.D. (Biochemistry))--North-West University, Potchefstroom Campus, 2007.
5

The effects of endocannabinoids and fatty acids on lipid metabolism and mitochondrial function in adipocytes

Siemens, Linda 12 April 2016 (has links)
The endocannabinoid (EC) system has a role in metabolic homeostasis. The purpose of this study was to determine the effect of ECs and the fatty acids they are derived from on lipid metabolism and mitochondrial function in adipocytes. 3T3-L1 adipocytes on day 8 of differentiation were treated with ECs and fatty acids for 48 hours in the absence or presence of insulin and various inhibitors. Lysates were analyzed via Western immunoblotting, a lipolysis assay and Seahorse XF Analyzer for changes in protein levels, phosphorylation state, lipolysis, and oxygen consumption rate. Results showed that ECs (2-arachidonoyl glycerol) stimulated lipolysis via a novel AMPK-dependent pathway, while fatty acids had varying effects on insulin signaling and mitochondrial function . These data suggest adipose tissue EC receptors may be a suitable target for anti-obesity therapy. Further research is needed to understand how the dietary fatty acid profile may influence synthesis of ECs. / May 2016
6

A genome wide approach to stress response and chronological ageing in yeast

Cao, Lu January 2018 (has links)
Caloric restriction (CR) extends lifespan from yeast to mammals. In budding yeast, inhibition of the conserved TOR and/or PKA pathways has been shown to mediate lifespan extension by CR partly through the activation of stress response. However, how the stress response is regulated at the systems level is poorly understood. In this study, by using fluorescent reporters whose expression is dependent on the transcription factors Msn2/4 and Gis1, two separate screenings were conducted to reveal novel regulators of the stress response induced by starvation. A 'focused' screening on the 272 'signalling' mutants revealed that, apart from the previously identified Rim15, Yak1 and Mck1 kinases, the SNF1/AMPK complex, the cell wall integrity (CWI) pathway and a number of cell cycle regulators are necessary to elicit appropriate stress response. The chronological lifespan (CLS) of these signalling mutants correlates well with the amount of accumulated storage carbohydrates but poorly with transition-phase cell cycle status. Subsequent analyses reveal that the levels of intracellular reactive oxygen species are controlled by Rim15, Yak1 and Mck1. Furthermore, CLS extension enabled by tor1 deletion is dependent on the above three kinases. These data suggest that the signalling pathways (SNF1 and CWI) and the kinases downstream of TOR/PKA (Rim15, Yak1 and Mck1) coordinate the metabolic reprogramming (to accumulate storage carbohydrates) and the activation of anti-oxidant defence systems (to control ROS levels) to extend chronological lifespan. A 'genome-wide' screening of a haploid deletion library indicates that less than 10% of the non-essential genes are implicated in the regulation of starvation-induced stress response. Gene ontology analysis suggests that they can be grouped into major clusters including mitochondrial function, r-RNA processing, DNA damage and repair, transcription from RNA polymerase and cell cycle regulation. Further phenotypic assays confirm the previous observation that CLS extension is mostly correlated with the accumulation of storage carbohydrates. Compromised expression of stress response reporters is confirmed by FACS in a variety of mitochondrial mutants, suggesting that mitochondrial respiration also plays a key role in the activation of stress response. Put together, the above findings indicate that stress response and metabolic reprogramming induced by glucose starvation are coordinated by multiple signalling pathways and the activation of mitochondrial respiration is essential to both cellular processes and to CLS extension.
7

Functional Approaches to the Development of Koala Sperm Cryopreservation Techniques

Yeng Zee Unknown Date (has links)
The primary objective of the studies described in this thesis was to improve the cryopreservation success of koala spermatozoa for the purpose of establishing a genome resource bank for this species. A defining feature of the studies in this thesis was the implementation of an organelle-specific approach to better understand the causes of koala sperm cryo-injury. The functional attributes of spermatozoa, such as mitochondrial function, plasma membrane fluidity, membrane lipid asymmetry and DNA integrity were assessed as an indication of cryo-injury. Sperm mitochondrial function and plasma membrane integrity were examined by cryomicroscopy using the fluorescent probes JC-1 and propidium iodide (PI) respectively in a dual staining technique. Cooling and re-warming koala spermatozoa were more detrimental to mitochondrial function than to plasma membrane integrity. Mitochondrial membrane potential (MMP) was suppressed by freezing and thawing treatments; after thawing, MMP declined significantly during rewarming (from 5ºC to 35ºC). The distribution of GM1 ganglioside was examined using fluorescent-labelled cholera toxin B. No significant redistribution of GM1 was observed after chilling or cryotreatment. The externalisation of phosphatidylserine (PS) was examined using fluorescent-labelled annexin V. There was no significant increase in translocation of PS after chilling or cryopreservation. These observations imply that cryotreatment had little effect on plasma membrane lipid asymmetry. Koala spermatozoa were incubated in a range of anisotonic media to investigate whether nuclear swelling was caused by osmotic flux during the cryopreservation process. Although the most hypotonic solution tested (64 mOsm/kg) induced the highest incidence of nuclear relaxation (mean ± SEM; 12 ± 3%), this was not as severe as that previously documented following cryopreservation. Chromatin relaxation is a phenomenon observed in koala spermatozoa, where the sperm nucleus expands due to the result of structural changes in the natural conformation of the sperm DNA/protamine complex. DNA fragmentation was not a primary cause of cryopreservation-induced sperm chromatin relaxation, although in situ nick translation of putative DNA breaks indicated that these increased as the sperm head became progressively more relaxed. Using a Sperm Chromatin Dispersion test (SCDt) specifically developed and validated for koala spermatozoa, a continuum of nuclear morphotypes was observed, ranging from no apparent DNA fragmentation to spermatozoa with highly dispersed and degraded chromatin. A double comet assay was also developed to investigate DNA fragmentation in the koala spermatozoa. Conducted under neutral followed by alkaline conditions, this assay was able to differentiate between single- (SSB) and double-stranded (DSB) DNA damage in an effort to refine the interpretation of DNA damage in mature koala spermatozoa; the majority of the koala spermatozoa had nuclei with DNA abasic-like residues. The ubiquity of these residues suggested that constitutive alkali-labile sites are part of the structural configuration of the koala sperm nucleus. Spermatozoa with “true” DNA fragmentation exhibited a continuum of comet morphologies, ranging from a more severe form of alkaline-susceptible DNA, to nuclei that exhibited both SSB and DSB. Swelling of koala sperm chromatin following cryopreservation has largely been attributed to the absence of inter-molecular disulphide cross-linkages in the marsupial sperm nucleus. Fish spermatozoa also lack disulphide bonds within their chromatin, but nevertheless, have been successfully cryopreserved. To examine the hypothesis that the cryoprotectants used for fish sperm cryopreservation will confer a similar degree of protection on koala spermatozoa, various concentrations of five cryoprotectants (dimethyl sulphoxide, methanol, propylene glycol, ethylene glycol and dimethylacetamide) were evaluated. Each treatment was compared against an established koala sperm cryopreservation protocol that uses 14% glycerol. Dimethylacetamide at a concentration of 12.5% (v/v) was found to be comparable to glycerol in the successful cryopreservation of koala spermatozoa although high inter-male variability was observed. However, when the new protocol was subsequently validated for a larger population of captive koalas (n = 22), glycerol emerged the better cryoprotectant with respect to all sperm viability parameters assessed except for that of the incidence of chromatin relaxation, which was not affected by the cryoprotectant. Significant difference was also observed in the post-thaw survival of spermatozoa from different animals, which was independent of pre-freeze semen quality. Based on post-thaw semen viability parameters, the koalas could be divided into two distinct groups, where one group had significantly higher sperm viability compared to the other group, regardless of cryoprotectant used. Positive correlation between motility and MMP was observed before and after cryopreservation. However, cryopreservation significantly reduced the dependency between these variables (P < 0.001), suggesting that cryopreservation reduced the dependency between mitochondrial function and motility.
8

Functional Approaches to the Development of Koala Sperm Cryopreservation Techniques

Yeng Zee Unknown Date (has links)
The primary objective of the studies described in this thesis was to improve the cryopreservation success of koala spermatozoa for the purpose of establishing a genome resource bank for this species. A defining feature of the studies in this thesis was the implementation of an organelle-specific approach to better understand the causes of koala sperm cryo-injury. The functional attributes of spermatozoa, such as mitochondrial function, plasma membrane fluidity, membrane lipid asymmetry and DNA integrity were assessed as an indication of cryo-injury. Sperm mitochondrial function and plasma membrane integrity were examined by cryomicroscopy using the fluorescent probes JC-1 and propidium iodide (PI) respectively in a dual staining technique. Cooling and re-warming koala spermatozoa were more detrimental to mitochondrial function than to plasma membrane integrity. Mitochondrial membrane potential (MMP) was suppressed by freezing and thawing treatments; after thawing, MMP declined significantly during rewarming (from 5ºC to 35ºC). The distribution of GM1 ganglioside was examined using fluorescent-labelled cholera toxin B. No significant redistribution of GM1 was observed after chilling or cryotreatment. The externalisation of phosphatidylserine (PS) was examined using fluorescent-labelled annexin V. There was no significant increase in translocation of PS after chilling or cryopreservation. These observations imply that cryotreatment had little effect on plasma membrane lipid asymmetry. Koala spermatozoa were incubated in a range of anisotonic media to investigate whether nuclear swelling was caused by osmotic flux during the cryopreservation process. Although the most hypotonic solution tested (64 mOsm/kg) induced the highest incidence of nuclear relaxation (mean ± SEM; 12 ± 3%), this was not as severe as that previously documented following cryopreservation. Chromatin relaxation is a phenomenon observed in koala spermatozoa, where the sperm nucleus expands due to the result of structural changes in the natural conformation of the sperm DNA/protamine complex. DNA fragmentation was not a primary cause of cryopreservation-induced sperm chromatin relaxation, although in situ nick translation of putative DNA breaks indicated that these increased as the sperm head became progressively more relaxed. Using a Sperm Chromatin Dispersion test (SCDt) specifically developed and validated for koala spermatozoa, a continuum of nuclear morphotypes was observed, ranging from no apparent DNA fragmentation to spermatozoa with highly dispersed and degraded chromatin. A double comet assay was also developed to investigate DNA fragmentation in the koala spermatozoa. Conducted under neutral followed by alkaline conditions, this assay was able to differentiate between single- (SSB) and double-stranded (DSB) DNA damage in an effort to refine the interpretation of DNA damage in mature koala spermatozoa; the majority of the koala spermatozoa had nuclei with DNA abasic-like residues. The ubiquity of these residues suggested that constitutive alkali-labile sites are part of the structural configuration of the koala sperm nucleus. Spermatozoa with “true” DNA fragmentation exhibited a continuum of comet morphologies, ranging from a more severe form of alkaline-susceptible DNA, to nuclei that exhibited both SSB and DSB. Swelling of koala sperm chromatin following cryopreservation has largely been attributed to the absence of inter-molecular disulphide cross-linkages in the marsupial sperm nucleus. Fish spermatozoa also lack disulphide bonds within their chromatin, but nevertheless, have been successfully cryopreserved. To examine the hypothesis that the cryoprotectants used for fish sperm cryopreservation will confer a similar degree of protection on koala spermatozoa, various concentrations of five cryoprotectants (dimethyl sulphoxide, methanol, propylene glycol, ethylene glycol and dimethylacetamide) were evaluated. Each treatment was compared against an established koala sperm cryopreservation protocol that uses 14% glycerol. Dimethylacetamide at a concentration of 12.5% (v/v) was found to be comparable to glycerol in the successful cryopreservation of koala spermatozoa although high inter-male variability was observed. However, when the new protocol was subsequently validated for a larger population of captive koalas (n = 22), glycerol emerged the better cryoprotectant with respect to all sperm viability parameters assessed except for that of the incidence of chromatin relaxation, which was not affected by the cryoprotectant. Significant difference was also observed in the post-thaw survival of spermatozoa from different animals, which was independent of pre-freeze semen quality. Based on post-thaw semen viability parameters, the koalas could be divided into two distinct groups, where one group had significantly higher sperm viability compared to the other group, regardless of cryoprotectant used. Positive correlation between motility and MMP was observed before and after cryopreservation. However, cryopreservation significantly reduced the dependency between these variables (P < 0.001), suggesting that cryopreservation reduced the dependency between mitochondrial function and motility.
9

The effect of different ozone concentrations on white blood cell energy homeostasis / Lissinda H. du Plessis

Du Plessis, Lissinda Hester January 2006 (has links)
Ozone therapy is an alternative form of therapy that has gained attention in the last couple of years. It is believed that O3 may exert a stimulatory effect on the antioxidant defence and immune systems and may therefore be effective in the treatment of ischemic disorders. diabetes mellitus. AIDS and other diseases. On the other hand. it is well known that O3 is a reactive molecule that is toxic to the pulmonary system. Therefore. there remains scepticism regarding its use as a form of therapy. In order to shed some light on this. the effects of ozone autohemotherapy (O3-AHT) on the energy homeostasis of white blood cells were investigated. The possible protective effects of the plasma antioxidant defence system during O3-AHT, were also investigated. Venous blood from six apparently healthy human donors was collected in heparin. In one aliquot a precise volume of blood was mixed with an equal volume of O2/O3 gas mixture containing 20 or 80 μg/ml O3 for 20 minutes. In the other aliquot, the plasma was washed out and the cells resuspended in a buffered phosphate solution. The buffered blood cells were treated with the same concentrations of O3. Control samples was either not treated or treated with a corresponding volume of O2 . Various biochemical analyses were done on the whole blood and buffered cells to determine the oxidant/antioxidant status, cell viability, apoptosis and mitochondrial function. The higher concentration of O3 increased oxidative stress and caused death of white blood cells. Antioxidant enzyme (catalase, glutathione reductase and glutathione peroxidase) activity and the plasma antioxidant capacity decreased, whereas superoxide dismutase levels increased slightly. Exposure to O3 also increased caspase 3/7 activity. A decrease in mitochondrial function was measured by a decrease in ATP levels and an increase in NADH/NAD+ ratio. Complex IV of the respiratory chain was almost completely inhibited by both O3 concentrations. These results indicated that the death of white blood cells was probably through apoptosis. These effects were more evident in the absence of plasma antioxidants. Therefore. high concentrations of O3 were damaging to the cells, but this effect was lessened by antioxidants present in plasma. In view of the results, the use of O3 as a therapy needs to be reconsidered. / Thesis (Ph.D. (Biochemistry))--North-West University, Potchefstroom Campus, 2007.
10

Functional Approaches to the Development of Koala Sperm Cryopreservation Techniques

Yeng Zee Unknown Date (has links)
The primary objective of the studies described in this thesis was to improve the cryopreservation success of koala spermatozoa for the purpose of establishing a genome resource bank for this species. A defining feature of the studies in this thesis was the implementation of an organelle-specific approach to better understand the causes of koala sperm cryo-injury. The functional attributes of spermatozoa, such as mitochondrial function, plasma membrane fluidity, membrane lipid asymmetry and DNA integrity were assessed as an indication of cryo-injury. Sperm mitochondrial function and plasma membrane integrity were examined by cryomicroscopy using the fluorescent probes JC-1 and propidium iodide (PI) respectively in a dual staining technique. Cooling and re-warming koala spermatozoa were more detrimental to mitochondrial function than to plasma membrane integrity. Mitochondrial membrane potential (MMP) was suppressed by freezing and thawing treatments; after thawing, MMP declined significantly during rewarming (from 5ºC to 35ºC). The distribution of GM1 ganglioside was examined using fluorescent-labelled cholera toxin B. No significant redistribution of GM1 was observed after chilling or cryotreatment. The externalisation of phosphatidylserine (PS) was examined using fluorescent-labelled annexin V. There was no significant increase in translocation of PS after chilling or cryopreservation. These observations imply that cryotreatment had little effect on plasma membrane lipid asymmetry. Koala spermatozoa were incubated in a range of anisotonic media to investigate whether nuclear swelling was caused by osmotic flux during the cryopreservation process. Although the most hypotonic solution tested (64 mOsm/kg) induced the highest incidence of nuclear relaxation (mean ± SEM; 12 ± 3%), this was not as severe as that previously documented following cryopreservation. Chromatin relaxation is a phenomenon observed in koala spermatozoa, where the sperm nucleus expands due to the result of structural changes in the natural conformation of the sperm DNA/protamine complex. DNA fragmentation was not a primary cause of cryopreservation-induced sperm chromatin relaxation, although in situ nick translation of putative DNA breaks indicated that these increased as the sperm head became progressively more relaxed. Using a Sperm Chromatin Dispersion test (SCDt) specifically developed and validated for koala spermatozoa, a continuum of nuclear morphotypes was observed, ranging from no apparent DNA fragmentation to spermatozoa with highly dispersed and degraded chromatin. A double comet assay was also developed to investigate DNA fragmentation in the koala spermatozoa. Conducted under neutral followed by alkaline conditions, this assay was able to differentiate between single- (SSB) and double-stranded (DSB) DNA damage in an effort to refine the interpretation of DNA damage in mature koala spermatozoa; the majority of the koala spermatozoa had nuclei with DNA abasic-like residues. The ubiquity of these residues suggested that constitutive alkali-labile sites are part of the structural configuration of the koala sperm nucleus. Spermatozoa with “true” DNA fragmentation exhibited a continuum of comet morphologies, ranging from a more severe form of alkaline-susceptible DNA, to nuclei that exhibited both SSB and DSB. Swelling of koala sperm chromatin following cryopreservation has largely been attributed to the absence of inter-molecular disulphide cross-linkages in the marsupial sperm nucleus. Fish spermatozoa also lack disulphide bonds within their chromatin, but nevertheless, have been successfully cryopreserved. To examine the hypothesis that the cryoprotectants used for fish sperm cryopreservation will confer a similar degree of protection on koala spermatozoa, various concentrations of five cryoprotectants (dimethyl sulphoxide, methanol, propylene glycol, ethylene glycol and dimethylacetamide) were evaluated. Each treatment was compared against an established koala sperm cryopreservation protocol that uses 14% glycerol. Dimethylacetamide at a concentration of 12.5% (v/v) was found to be comparable to glycerol in the successful cryopreservation of koala spermatozoa although high inter-male variability was observed. However, when the new protocol was subsequently validated for a larger population of captive koalas (n = 22), glycerol emerged the better cryoprotectant with respect to all sperm viability parameters assessed except for that of the incidence of chromatin relaxation, which was not affected by the cryoprotectant. Significant difference was also observed in the post-thaw survival of spermatozoa from different animals, which was independent of pre-freeze semen quality. Based on post-thaw semen viability parameters, the koalas could be divided into two distinct groups, where one group had significantly higher sperm viability compared to the other group, regardless of cryoprotectant used. Positive correlation between motility and MMP was observed before and after cryopreservation. However, cryopreservation significantly reduced the dependency between these variables (P < 0.001), suggesting that cryopreservation reduced the dependency between mitochondrial function and motility.

Page generated in 0.1046 seconds