• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • Tagged with
  • 58
  • 58
  • 22
  • 16
  • 15
  • 13
  • 12
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Noise, Delays, and Resonance in a Neural Network

Quan, Austin 01 May 2011 (has links)
A stochastic-delay differential equation (SDDE) model of a small neural network with recurrent inhibition is presented and analyzed. The model exhibits unexpected transient behavior: oscillations that occur at the boundary of the basins of attraction when the system is bistable. These are known as delay-induced transitory oscillations (DITOs). This behavior is analyzed in the context of stochastic resonance, an unintuitive, though widely researched phenomenon in physical bistable systems where noise can play in constructive role in strengthening an input signal. A method for modeling the dynamics using a probabilistic three-state model is proposed, and supported with numerical evidence. The potential implications of this dynamical phenomenon to nocturnal frontal lobe epilepsy (NFLE) are also discussed.
52

Early Detection of Atypical Motor and Neurobehavior of Infants at Risk Secondary to Opioid Exposure: A Prospective Study

Boynewicz, Kara 01 May 2022 (has links)
Prenatal opioid exposure has been studied in relation to infants' medical outcomes. However, large gaps exist in the literature supporting early identification of atypical neurobehavior and motor development of infants with prenatal opioid exposure. The purpose of the study was to investigate whether prenatal opioid exposure has a negative influence on a newborn infant’s neurobehavior and motor development to aid in the early identification of potential delays. Using a prospective quasi experimental design, infants motor development using the Test of Infant Motor Performance (TIMP) and neurobehavior using the NICU Neonatal Network Scale (NNNS) was assessed on 58 infants in a hospital setting. Even after statistically controlling for covariates both the TIMP and the six out of twelve subscales of the NNNS: attention, handling, self-regulation, arousal, excitability, and stress were significantly different between the two groups of infants. Infants’ TIMP z-scores were significantly correlated with the NNNS subscales of attention, handing, self-regulation, arousal, excitability, hypertonicity, non-optimal reflexes, and stress. The findings highlight the similarities between the two groups and the outcome measures used for early identification of infants at-risk for delays following prenatal opioid exposure. The neonatal outcomes described here, including growth deficits, motor delays and altered neurobehavior are critical given their association with longer-term health and developmental impacts.
53

A CNS-Active siRNA Chemical Scaffold for the Treatment of Neurodegenerative Diseases

Alterman, Julia F. 13 May 2019 (has links)
Small interfering RNAs (siRNAs) are a promising class of drugs for treating genetically-defined diseases. Therapeutic siRNAs enable specific modulation of gene expression, but require chemical architecture that facilitates efficient in vivodelivery. siRNAs are informational drugs, therefore specificity for a target gene is defined by nucleotide sequence. Thus, developing a chemical scaffold that efficiently delivers siRNA to a particular tissue provides an opportunity to target any disease-associated gene in that tissue. The goal of this project was to develop a chemical scaffold that supports efficient siRNA delivery to the brain for the treatment of neurodegenerative diseases, specifically Huntington’s disease (HD). HD is an autosomal dominant neurodegenerative disorder that affects 3 out of every 100,000 people worldwide. This disorder is caused by an expansion of CAG repeats in the huntingtin gene that results in significant atrophy in the striatum and cortex of the brain. Silencing of the huntingtin gene is considered a viable treatment option for HD. This project: 1) identified a hyper-functional sequence for siRNA targeting the huntingtin gene, 2) developed a fully chemically modified architecture for the siRNA sequence, and 3) identified a new structure for siRNA central nervous system (CNS) delivery—Divalent-siRNA (Di-siRNA). Di-siRNAs, which are composed of two fully chemically-stabilized, phosphorothioate-containing siRNAs connected by a linker, support potent and sustained gene modulation in the CNS of mice and non-human primates. In mice, Di-siRNAs induced potent silencing of huntingtin mRNA and protein throughout the brain one month after a single intracerebroventricular injection. Silencing persisted for at least six months, with the degree of gene silencing correlating to guide strand tissue accumulation levels. In Cynomolgus macaques, a bolus injection exhibited significant distribution and robust silencing throughout the brain and spinal cord without detectable toxicity. This new siRNA scaffold opens the CNS for RNAi-based gene modulation, creating a path towards developing treatments for genetically-defined neurological disorders.
54

Therapy Options for Winged Scapula Patients: A Literature Review

Normand, Samantha L 01 January 2016 (has links)
Winged scapula is a condition characterized by lateral or medial protrusion of the scapula caused by nerve damage leading to muscular paralysis. The purpose of this systematic review of literature is to evaluate the current research literature related to the effectiveness of therapy options for winged scapula. Eleven peer reviewed English language research articles published from 1998 to present were included for evaluation. Study results revealed positive therapeutic outcomes for physical therapy and scapular bracing. Results also showed positive outcomes for the use of transcutaneous electrical nerve stimulation and acupuncture for the treatment of nerve related conditions similar to winged scapula. Additional research is needed to evaluate the effectiveness of transcutaneous electrical nerve stimulation and acupuncture for winged scapula patients specifically.
55

INDUCTION OF NEUROTROPHIC AND DIFFERENTIATION GENES IN NEURAL STEM CELLS BY VALPROIC ACID

Almutawaa, Saeed Walaa 04 1900 (has links)
<p>Valproic acid (<em>2-propylpentanoicacid</em>) has long been in use as an anticonvulsant and mood-stabilizer. Recently, VPA has been shown to inhibit the activity of histone deacetylases (HDACs), resulting in chromatin remodelling and changes in gene expression<em>.</em> Although the molecular mechanism for VPA action in the central nervous is not well understood, many signalling pathways have been suggested as targets for this HDAC inhibitor. For instance, VPA was found to induce differentiation in adult hippocampal neural progenitor cells via the β-catenin-Ras-ERK pathway. Also, VPA up regulated Bcl-2, a neurotrophic/neuroprotective protein, with association of extracellular signal-regulated kinase (ERK-1) and phosphatidylinositol 3- kinase (PI3) pathway activation. In this study, C17.2 neural stem cells were used to examine the effects of VPA on the expression of several neurotrophic factors including; cerebral dopamine neurotrophic factor (CDNF) and mesencephalic astrocyte-derived neurotrophic factor (MANF), glial cell-derived neurotrophic factor (GDNF), <em>brain-derived neurotrophic factor</em><em> (</em>BDNF). Other genes including; the orphan nuclear receptor-related factor1 (Nurr-1), the early growth response protein 1(Egr-1), and the sex determining region Y-box-2 (Sox-2) were examined. Histone H3 acetylation and the ERK1/2 pathway were examined as possible targets for VPA action. Treatment with clinically relevant concentrations of VPA (1mM, and 3 mM) induced a significant increase of CDNF protein concentrations. Also, increases in the mRNA expression of GDNF, Nurr-1, and Egr-1 were detected following 24 hours VPA treatment at clinically relevant concentrations. Moreover, an increase of histone H3 acetylation was noticed in C17.2 NSCs. These findings might support the role of VPA in neuronal differentiation and neuroprotection.</p> / Master of Science (MSc)
56

TUMOR NECROSIS FACTOR ALPHA (TNFα) in SANDHOFF DISEASE PATHOLOGY

Abou-Ouf, Hatem A. 17 September 2014 (has links)
<p><strong>Abstract</strong></p> <p>Sandhoff disease (SD) is a monogenic lysosomal storage disorder caused by a lack of a functional β-subunit of the beta-hexosaminidase A and B enzymes. The clinical phenotype of <em>Hexb</em><sup>-/-</sup>mouse model recapitulates the symptoms and signs of Tay-Sachs and Sandhoff diseases in human. To gain insight into the neuropathology of Sandhoff disease, we defined the role of TNFα in the development and progression of Sandhoff disease pathology in mice, by generating a <em>Hexb<sup>-/-</sup>Tnf</em><em>a</em><em><sup>-/-</sup></em> double knock-out mouse. Behavioural testing and immunostaining data revealed the neurodegenerative role of TNFα in disease pathology. Double knock-out mice showed ameliorated clinical course, with prolonged life span. TNFα-deficient Sandhoff mice also demonstrate decreased levels of astrogliosis, and reduced neuronal cell death. Deletion of <em>Tnfα</em> in Sandhoff mice inhibited JAK2/STAT3 pathway, implicating its role in glia cell activation. This result points to TNFa as a potential therapeutic target to attenuate neuro-pathogenesis.</p> <p>To investigate whether blood-derived or CNS-derived TNFα has the major impact on neurological function, we transplanted <em>Hexb<sup>-/-</sup>Tnfα<sup>+/+</sup></em> with bone marrow from either <em>Hexb<sup>-/-</sup>Tnfα<sup>-/-</sup></em>or <em>Hexb<sup>-/-</sup>Tnf</em><em>a</em><em><sup>+/+</sup></em> mice donors. Neurological tests shows a significant clinical improvement for Hexb<em><sup>-/-</sup>Tnfα<sup>-/-</sup></em> compared to <em>Hexb<sup>-/-</sup>Tnf</em><em>a</em><em><sup>+/+</sup></em> recipient, regardless the genotype of donor cells. These findings highlight the importance of resident-derived TNFα during the robust neurodegenerative consequences in Sandhoff disease. To understand of the role of microRNAs in Sandhoff pathology, we investigated the miRNA profile in Sandhoff brains. A pattern of dys-regulated microRNAs was evident in Sandhoff CNS. Microarray identified miR-210 and miR-96 dys-regulated pattern in the CNS of Sandhoff mice. Strikingly, neuronal pentraxin, a putative target gene for miR-210, was induced in Sandhoff brains.</p> <p>Taken together, this work establishes the proinflammatory role of TNFα in Sandhoff pathology, leading to massive neuro-apoptosis. Importantly, our studies propose that neuronal pentraxin as a novel target gene for microRNA-210 in Sandhoff brain samples, providing a potential modulator of neurodegeneration.</p> / Doctor of Philosophy (PhD)
57

Anti-Psychotic Drug Induced Tardive Dyskinesia: A Role for the Anti-Apoptotic Molecule Curcumin

Sookram, Christal D. 10 1900 (has links)
<p>Anti-psychotic drug (APD) administration can induce movement disorders including tardive dyskinesia (TD), characterized by abnormal movements of the oro-facial region and occasionally the trunk and limbs. The most widely accepted model of TD is the APD-induced vacuous chewing movement (VCM). While the mechanism of induction of TD remains unclear, there are two prevailing hypothesis: oxidative stress and dopamine supersensitivity. Currently available APDs antagonize dopamine D2 receptors (D2R) which can result in excessive dopamine accumulation and oxidation which was demonstrated to induce striatal neurodegeneration and increased oxidative stress. The dopamine supersensitivity hypothesis proposes that APD treatment causes an up-regulation of high affinity D2Rs to compensate for D2R antagonism. Curcumin, a derivative of turmeric, has been demonstrated to affect dopamine levels and hold significant anti-apoptotic potential. Thus, the goal of this study was to investigate curcumin’s potential to prevent haloperidol-induced behavioural and biochemical abnormalities. Four groups of rats were treated daily: control; haloperidol (at 2mg/kg intra-peritoneally); curcumin (at 200mg/kg orally in jello) and curcumin plus haloperidol. VCMs, catalepsy and locomotor activity were assessed. Animals were sacrificed and tissues removed for qPCR, immunoblot, receptor binding, and UPLC assessments. At day14 there was a significant increase in VCMs and catalepsy following haloperidol treatment, which was prevented by curcumin treatment. However, curcumin did not alter locomotor activity. Curcumin was demonstrated to increase the expression of the anti-apoptotic molecule BclXL and to increase striatal D2Rs. These investigations support the potential of curcumin in the prevention of TD and provide insight into the complex pathophysiology of this disorder.</p> / Doctor of Philosophy (Medical Science)
58

Inhibiting Axon Degeneration in a Mouse Model of Acute Brain Injury Through Deletion of Sarm1

Henninger, Nils 24 May 2017 (has links)
Traumatic brain injury (TBI) is a leading cause of disability worldwide. Annually, 150 to 200/1,000,000 people become disabled as a result of brain trauma. Axonal degeneration is a critical, early event following TBI of all severities but whether axon degeneration is a driver of TBI remains unclear. Molecular pathways underlying the pathology of TBI have not been defined and there is no efficacious treatment for TBI. Despite this significant societal impact, surprisingly little is known about the molecular mechanisms that actively drive axon degeneration in any context and particularly following TBI. Although severe brain injury may cause immediate disruption of axons (primary axotomy), it is now recognized that the most frequent form of traumatic axonal injury (TAI) is mediated by a cascade of events that ultimately result in secondary axonal disconnection (secondary axotomy) within hours to days. Proposed mechanisms include immediate post-traumatic cytoskeletal destabilization as a direct result of mechanical breakage of microtubules, as well as catastrophic local calcium dysregulation resulting in microtubule depolymerization, impaired axonal transport, unmitigated accumulation of cargoes, local axonal swelling, and finally disconnection. The portion of the axon that is distal to the axotomy site remains initially morphologically intact. However, it undergoes sudden rapid fragmentation along its full distal length ~72 h after the original axotomy, a process termed Wallerian degeneration. Remarkably, mice mutant for the Wallerian degeneration slow (Wlds) protein exhibit ~tenfold (for 2–3 weeks) suppressed Wallerian degeneration. Yet, pharmacological replication of the Wlds mechanism has proven difficult. Further, no one has studied whether Wlds protects from TAI. Lastly, owing to Wlds presumed gain-of-function and its absence in wild-type animals, direct evidence in support of a putative endogenous axon death signaling pathway is lacking, which is critical to identify original treatment targets and the development of viable therapeutic approaches. Novel insight into the pathophysiology of Wallerian degeneration was gained by the discovery that mutant Drosophila flies lacking dSarm (sterile a/Armadillo/Toll-Interleukin receptor homology domain protein) cell-autonomously recapitulated the Wlds phenotype. The pro-degenerative function of the dSarm gene (and its mouse homolog Sarm1) is widespread in mammals as shown by in vitro protection of superior cervical ganglion, dorsal root ganglion, and cortical neuron axons, as well as remarkable in-vivo long-term survival (>2 weeks) of transected sciatic mouse Sarm1 null axons. Although the molecular mechanism of function remains to be clarified, its discovery provides direct evidence that Sarm1 is the first endogenous gene required for Wallerian degeneration, driving a highly conserved genetic axon death program. The central goals of this thesis were to determine (1) whether post-traumatic axonal integrity is preserved in mice lacking Sarm1, and (2) whether loss of Sarm1 is associated with improved functional outcome after TBI. I show that mice lacking the mouse Toll receptor adaptor Sarm1 gene demonstrate multiple improved TBI-associated phenotypes after injury in a closed-head mild TBI model. Sarm1-/- mice developed fewer beta amyloid precursor protein (βAPP) aggregates in axons of the corpus callosum after TBI as compared to Sarm1+/+ mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the phosphorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after TBI. Strikingly, whereas wild type mice exhibited a number of behavioral deficits after TBI, I observed a strong, early preservation of neurological function in Sarm1-/- animals. Finally, using in vivo proton magnetic resonance spectroscopy, I found tissue signatures consistent with substantially preserved neuronal energy metabolism in Sarm1-/- mice compared to controls immediately following TBI. My results indicate that the Sarm1-mediated prodegenerative pathway promotes pathogenesis in TBI and suggest that anti-Sarm1 therapeutics are a viable approach for preserving neurological function after TBI.

Page generated in 0.0778 seconds