• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interaction and Regulation of beta-Amyloid Precursor Protein by APPBP1 and Pin1

Guo, Jia-Wen 17 July 2002 (has links)
b-amyloid is derived from amyloid precursor protein (APP) and tightly associated with the pathogenesis of Alzheimer¡¦s disease (AD). Structurally, APP belongs to type I transmembrane protein family and is composed of a large glycosylated extracellular component, a single membrane-spanning region, and a short cytoplasmic domain. Although physiological function of APP remains unclear, the proteolytic processing of APP by b secretase and g secretase gives rise to the production and secretion of b-amyloid. The C-terminus of APP is believed to participate in the intracellular trafficking of APP and signal transduction via interacting with adaptors and signaling proteins, respectively. Three phosphorylation sites (Thr654, Ser655 and Thr668, numbering for APP695 isoform) and several functional motifs in the cytoplasmic domain of APP have been identified and demonstrated that the phosphorylation can indeed affect APP metabolism including: the rate of secretion, endocytosis and b-amyloid production. In this study, we focused on how APP binding protein1 and the phosphorylation affect on APP metabolism. The reasons are as following: (1) Among many APP associated proteins, APP binding protein 1 (APPBP1) is involved in S-M checkpoint regulation. (2) Recent evidence indicates that aberrantly activation of mitotic events may play an important role in development of AD. Since progression through mitosis is regulated by Cdc2 that has been demonstrated to phosphorylate APP on Thr668-Pro669, the phosphorylation of APP at Thr668 may play the important role in regulating APP metabolism and may also relate to AD development. (3) Moreover, protein phosphorylation induces the conformational change and affects the protein- protein interaction. Phosphorylation of Ser / Thr-Pro motif is a central mechanism controlling progression of the cell cycle, including mitosis. Proline residues provide a potential backbone switch in the polypeptide chain controlled by the cis / trans isomerization. Pin1 is an important mitotic regulator and a highly specific peptidyl-prolyl cis / trans isomerases (PPIase) that catalyzes the isomerization of phosphorylated Ser / Thr-Pro bonds. Our unpublished data have shown that Pin1 can bind to the phosphorylated Thr668-Pro669 APP peptide with high affinity (20 nM) that suggested that Pin1 may interact and regulate mitotic APP. Taken together, these data suggested that the interaction of APP and APPBP1 or Pin1 may affect the APP metabolism and its physiological function. This study investigated the hypothesis above and revealed includes the following results (i) the subcellular localization of the C-terminus of APP and APPBP1; (ii) the interaction between APPBP1 and the C-terminus of APP in vivo and in vitro; (iii) Thr668 of APP is the Cdc2 phosphorylation site; (iv) the binding of APPBP1 to the C-terminus of APP reduces the phosphorylation of APP by Cdc2; (v) the phosphorylation at Thr668 can abolish the interaction between APPBP1 and the C-terminus of APP; (vi) the C-terminus of APP is one of the caspase 3 targets; (vii) the phosphorylation of APP at Thr668 also reduces the caspase 3 activity forward to the C-terminus of APP cleavage; (viii) both APPBP1 and Pin1 can inhibit the C-terminus of APP cleavage by caspase 3 that suggested two novel mechanisms to regulate APP metabolism.
2

Analysis of the beta amyloid precursor protein mRNAs in Alzheimer's disease

Golde, Todd Eliot January 1991 (has links)
No description available.
3

Cerebral Perfusion Pressure Directed Therapy Following Traumatic Brain Injury and Hypotension in Swine

Malhotra, Ajai K., Schweitzer, John B., Fox, Jerry L., Fabian, Timothy C., Proctor, Kenneth G. 01 September 2003 (has links)
There is a paucity of studies, clinical and experimental, attesting to the benefit of cerebral perfusion pressure (CPP) directed pressor therapy following traumatic brain injury (TBI). The current study evaluates this therapy in a swine model of TBI and hypotension. Forty-five anesthetized and ventilated swine received TBI followed by a 45% blood volume bleed. After 1 h, all animals were resuscitated with 0.9% sodium chloride equal to three times the shed blood volume. The experimental group (PHE) received phenylephrine to maintain CPP > 80 mm Hg; the control group (SAL) did not. Outcomes in the first phase (n = 33) of the study were as follows: cerebro-venous oxygen saturation (S cvO2), cerebro-vascular carbon dioxide reactivity (δScvO2), and brain structural damage (β-amyloid precursor protein [βAPP] immunoreactivity). In the second phase (n = 12) of the study, extravascular blood free water (EVBFW) was measured in the brain and lung. After resuscitation, intracranial and mean arterial pressures were >15 and >80 mm Hg, respectively, in both groups. CPP declined to 64 ± 5 mm Hg in the SAL group, despite fluid supplements. CPP was maintained at >80 mm Hg with pressors in the PHE group. PHE animals maintained better ScvO2 (p < 0.05 at 180, 210, 240, 270, and 300 min post-TBI). At baseline, 5% CO2 evoked a 16 ± 4% increase in ScvO2, indicating cerebral vasodilatation and luxury perfusion. By 240 min, this response was absent in SAL animals and preserved in PHE animals (p < 0.05). Brain EVBFW was higher in SAL animals; however, lung EVBFW was higher in PHE animals. There was no difference in βAPP immunoreactivity between the SAL and PHE groups (p > 0.05). In this swine model of TBI and hypotension, CPP directed pressor therapy improved brain oxygenation and maintained cerebro-vascular CO2 reactivity. Brain edema was lower, but lung edema was greater, suggesting a higher propensity for pulmonary complications.
4

Mise au point d’un nouveau modèle d’organoïde cérébral humain pour l’étude des mécanismes d’interaction de la protéine prion et de l’amyloïde β / Set Up of a New Human Cerebral Organoid Model to Study the Interaction Mechanisms of Prion and β Amyloid Proteins

Pavoni, Serena 13 December 2017 (has links)
Les mécanismes de type prion sont désormais reconnus comme sous-tendant la plupart des maladies neurodégénératives humaines, avec en premier lieu la maladie d’Alzheimer (MA) au niveau de ses 2 marqueurs spécifiques, l’amyloïde β (Aβ à l’origine de l’hypothèse étiopathogénique de la cascade amyloïde) et la protéine Tau phosphorylée. Par ailleurs la protéine du prion (PrPC) est décrite comme interagissant à de multiples niveaux avec le métabolisme de l’Aβ sans que les mécanismes physiopathologiques sous-jacents n’aient pu être expliqués. Pour sortir de l’impasse actuelle concernant le développement d’approches thérapeutiques efficaces pour la MA, l’industrie pharmaceutique a besoin de modèles expérimentaux innovants. En effet, à ce jour aucun modèle in vivo, en dépit des progrès réalisés avec les souris transgéniques, n’arrive à refléter la complexité cérébrale humaine ni à mimer une MA clinique. Les cultures in vitro en 2D sont quant à elles très éloignées des situations conduisant à l’accumulation d’agrégats protéiques pathologiques. Le but de notre thèse a été d’utiliser dans le domaine des neurosciences les nouvelles perspectives de recherche ouvertes par les technologies des cellules souches pluripotentes induites (cellules iPS) en développant un modèle de différentiation en 3D pour obtenir des organoïdes cérébraux humains (OC) (mini cerveaux). Leur capacité d’auto-organisation en 3D de tissu neuroectodermique nous a permis de recréer un système complexe mimant différentes structures cérébrales humaines dans lesquelles nous avons pu caractériser les marqueurs attendus. L’étude de l’expression des protéines d’intérêt APP et PrPC pendant la différentiation neurale a permis de caractériser la modulation des niveaux des deux protéines en fonction du temps de culture. Afin d’orienter le modèle vers des mécanismes d’accumulation protéique de type MA, nous avons testé différents inducteurs chimiques dont l’Aftin-5 qui est capable de moduler les voies post-traductionnelles de l’APP. Plusieurs stratégies de traitement ont été adoptées pour induire le clivage de l’APP et la génération d’Aβ. La production des fragments solubles Aβ38, Aβ40, Aβ42 a été mise en évidence par ELISA. Les niveaux générés sont reproductibles et l’augmentation du ratio Aβ42/Aβ40 est cohérente avec les données extrapolées des modèles murins et humains, ce qui a permis de valider notre modèle. Les niveaux d’expression génique et protéique de PrPC et de APP suite au traitement ont été analysés afin de mieux déterminer le rôle de l’interaction entre ces deux facteurs. L’objectif à long terme consiste à améliorer ce modèle, dont les limites actuelles sont notamment l’absence de vascularisation et le niveau de maturation du tissu neural. Le défi majeur dans le cadre de la culture des OC consiste donc à favoriser l’intégration du système vasculaire, et par ailleurs à accélérer le vieillissement in vitro pour l’étude de maladies neurodégénératives. La perspective de pouvoir automatiser le système de culture des OC permet d’envisager l’utilisation de ce modèle à plus grande échelle dans le cadre de test de cytotoxicité et/ou de criblage pharmacologique à haut débit pour identifier de nouvelles molécules thérapeutiques pour la MA. / Prion-like mechanisms are known to underlie most of human neurodegenerative diseases including Alzheimer’s disease (AD), which is characterized by two important pathological markers, β amyloid (or Aβ at the origin of the etiopathogenic amyloid cascade hypothesis) and phosphorylated tau protein. Furthermore, the prion protein (PrPC) interacts at multiple levels with the metabolism of Aβ, by mechanisms which are not well understood. To overcome the current limits in the development of efficient strategies to treat AD, the pharmaceutical industry requires innovative experimental models. However, even if a lot of progress has been achieved by using transgenic mouse models, to date no in vivo model can reflect the complexity of human brain or reproduce a clinical context. 2D in vitro cell culture models are unable to allow the aggregation and accumulation of pathological proteins as observed in vivo. The aim of this study consists in taking advantage of the research prospects offered by induced pluripotent stem cell (iPSCs) in the field of neurosciences. iPSCs can be used to generate 3D models of differentiation also called human cerebral organoids or mini-brains (MBs). Their ability to self-organise in 3D neuroectodermic tissue leds to a complex system that mimics different human cerebral structures in which we were able to characterize the expected markers. The study of the two proteins of interest (APP and PrPC) during neural differentiation has allowed us to follow the modulation of protein expression level occurring during the in vitro development of the human MBs. In order to use this model to reproduce the protein accumulation mechanisms seen in AD, we have tested chemical inductors such as Aftin-5 in order to modulate the APP post-transcriptional pathway towards a pathological outcome. Many strategies of treatment are adopted to lead APP cleavage and Aβ generation. The production of soluble fragments Aβ38, Aβ40, Aβ42 in the supernatant of organoids has been showed using ELISA technique. The levels generated are reproducible and the increase of Aβ42/Aβ40 ratio is consistent with extrapolated data from mouse and human models thus validating our model. Analysis at the gene and protein level has been assessed in order to understand the interaction between PrPC and APP after treatment. The long-term goal consists in improving this model which is notably hampered by the absence of vascularization and the low level of maturation of the neural tissue. The main challenge in MB culture thus consists in the integration of the vascular system, and also in increasing the speed of ageing process in vitro for the study of neurodegenerative diseases. In the long term, the prospect of automating the culture of MBs would allow the use of the system for cytotoxicity testing and/or high throughput screening for the discovery of new drugs for AD.
5

Inhibiting Axon Degeneration in a Mouse Model of Acute Brain Injury Through Deletion of Sarm1

Henninger, Nils 24 May 2017 (has links)
Traumatic brain injury (TBI) is a leading cause of disability worldwide. Annually, 150 to 200/1,000,000 people become disabled as a result of brain trauma. Axonal degeneration is a critical, early event following TBI of all severities but whether axon degeneration is a driver of TBI remains unclear. Molecular pathways underlying the pathology of TBI have not been defined and there is no efficacious treatment for TBI. Despite this significant societal impact, surprisingly little is known about the molecular mechanisms that actively drive axon degeneration in any context and particularly following TBI. Although severe brain injury may cause immediate disruption of axons (primary axotomy), it is now recognized that the most frequent form of traumatic axonal injury (TAI) is mediated by a cascade of events that ultimately result in secondary axonal disconnection (secondary axotomy) within hours to days. Proposed mechanisms include immediate post-traumatic cytoskeletal destabilization as a direct result of mechanical breakage of microtubules, as well as catastrophic local calcium dysregulation resulting in microtubule depolymerization, impaired axonal transport, unmitigated accumulation of cargoes, local axonal swelling, and finally disconnection. The portion of the axon that is distal to the axotomy site remains initially morphologically intact. However, it undergoes sudden rapid fragmentation along its full distal length ~72 h after the original axotomy, a process termed Wallerian degeneration. Remarkably, mice mutant for the Wallerian degeneration slow (Wlds) protein exhibit ~tenfold (for 2–3 weeks) suppressed Wallerian degeneration. Yet, pharmacological replication of the Wlds mechanism has proven difficult. Further, no one has studied whether Wlds protects from TAI. Lastly, owing to Wlds presumed gain-of-function and its absence in wild-type animals, direct evidence in support of a putative endogenous axon death signaling pathway is lacking, which is critical to identify original treatment targets and the development of viable therapeutic approaches. Novel insight into the pathophysiology of Wallerian degeneration was gained by the discovery that mutant Drosophila flies lacking dSarm (sterile a/Armadillo/Toll-Interleukin receptor homology domain protein) cell-autonomously recapitulated the Wlds phenotype. The pro-degenerative function of the dSarm gene (and its mouse homolog Sarm1) is widespread in mammals as shown by in vitro protection of superior cervical ganglion, dorsal root ganglion, and cortical neuron axons, as well as remarkable in-vivo long-term survival (>2 weeks) of transected sciatic mouse Sarm1 null axons. Although the molecular mechanism of function remains to be clarified, its discovery provides direct evidence that Sarm1 is the first endogenous gene required for Wallerian degeneration, driving a highly conserved genetic axon death program. The central goals of this thesis were to determine (1) whether post-traumatic axonal integrity is preserved in mice lacking Sarm1, and (2) whether loss of Sarm1 is associated with improved functional outcome after TBI. I show that mice lacking the mouse Toll receptor adaptor Sarm1 gene demonstrate multiple improved TBI-associated phenotypes after injury in a closed-head mild TBI model. Sarm1-/- mice developed fewer beta amyloid precursor protein (βAPP) aggregates in axons of the corpus callosum after TBI as compared to Sarm1+/+ mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the phosphorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after TBI. Strikingly, whereas wild type mice exhibited a number of behavioral deficits after TBI, I observed a strong, early preservation of neurological function in Sarm1-/- animals. Finally, using in vivo proton magnetic resonance spectroscopy, I found tissue signatures consistent with substantially preserved neuronal energy metabolism in Sarm1-/- mice compared to controls immediately following TBI. My results indicate that the Sarm1-mediated prodegenerative pathway promotes pathogenesis in TBI and suggest that anti-Sarm1 therapeutics are a viable approach for preserving neurological function after TBI.

Page generated in 0.3736 seconds