• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 15
  • 15
  • 15
  • 11
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of the role of D2 receptors in methylphenidate-induced conditioned place preference.

Duty, Chase M. 11 May 2013 (has links)
ADHD is one of the most commonly diagnosed disorders during adolescence. Recently, significant increases in the diagnosis of ADHD have caused the prescription of the ADHD medication methylphenidate (MPH) to increase. MPH is a psychostimulant that blocks the dopamine transporter, which is responsible for dopamine reuptake at the synapse. The blockade of the dopamine transporter results in an increase in the availability of dopamine in the synaptic cleft. This increase of dopamine accounts for the addictive properties of a MPH due to strong effects on portions of the brain’s drug-reward pathway, including the striatum and nucleus accumbens. In this study, we hypothesized that dopamine D2 receptor antagonism would block MPH-induced conditioned place preference. We also hypothesized this will be more effective in adolescent male rats as compared to adolescent female rats based on evidence that has shown a higher density of dopamine D2 receptors in the brain’s reward areas of adolescent male rats. The effects of MPH on the associative effects of MPH was analyzed using the conditioned place preference (CPP) behavioral paradigm. Results showed that MPH-induced CPP was not blocked by the dopamine D2 receptor antagonist, likely due to its effects on the inhibitory presynaptically located dopamine D2 autoreceptor. The importance of these findings is discussed relative to the role of the D2 receptor in MPH addiction.
2

DOES FOLIC ACID SUPPLEMENTATION PREVENT NICOTINE-INDUCED BETA CELL DYSFUNCTION

Nicholson, Catherine J. 04 1900 (has links)
<p>Previous studies suggest that nicotine impairs pancreatic function, which may explain the increased risk of T2DM in smokers. We have previously shown that nicotine exposure results in decreased beta cell function, an effect which appears to be mediated via increased beta cell oxidative stress. The goal of this study is to determine whether folic acid, an antioxidant, can prevent nicotine-induced beta cell dysfunction in the beta cell.</p> <p>INS 1E cells, a rat pancreatic beta cell line, were treated with nicotine or vehicle ± 10µM folic acid for 48 hours. Nicotine treatment decreased both basal and glucose stimulated insulin secretion, but had no effect on insulin content, mitochondrial function or markers of apoptosis. Expression of oxidative stress/damage markers (HSP70 and 4-HNE), antioxidant enzymes (Cu/ZnSOD, MnSOD and CAT), insulin gene transcription factor PDX1 and K<sub>ATP </sub>channel subunit kir<sub>6.2</sub> were determined by western blot analysis. Expression of HSP70, 4-HNE and MnSOD were significantly increased with nicotine treatment (p=0.002, 0.05 and 0.03 respectively). Cu/ZnSOD and CAT expression remained unchanged with nicotine treatment. The addition of folic acid significantly reduced HSP70 expression, 4-HNE expression, CAT expression, but did not alter the expression of MnSOD. There was a significant (p6.2expression (p=0.019) which showed a trend toward reduced expression following treatment with folic acid (p=0.067).</p> <p>Nicotine treatment significantly increases markers of oxidative stress and oxidative damage in pancreatic beta cells; an effect which was reversed by folic acid administration. Nicotine and folic acid treatment increased insulin content, likely mediated through an increase in the insulin gene transcription factor, PDX1. Furthermore, nicotine treatment increased expression of kir<sub>6.2, </sub>suggesting a defect in the insulin secretory mechanism. This effect was reversed with folic acid treatment.Although many studies suggest that Canadians are meeting or exceeding recommended folate levels, this is not true in smokers. Our data suggest that additional folate supplementation in smokers may prevent nicotine-induced damage to the pancreas and thus reduce the risk of type 2 diabetes.</p> / Master of Science (MSc)
3

Embryonic Stem Cell-Derived Exosomes Increase the Antiproliferative Activity of Doxorubicin in Breast Cancer

Hirsch, Alexander M 01 January 2019 (has links)
The field of cancer research has grown immensely in recent decades and has led to a better understanding of the causes of the disease, as well as greatly improved treatment for various types of cancers, especially breast cancer. One of the most effective treatments involves the chemotherapeutic drug doxorubicin (DOX). DOX is an effective tool against all types of breast cancer, especially against triple negative breast cancer. However, DOX causes adverse side effects that include damage to the heart and skeletal muscle, particularly above specific cumulative doses. Recent evidence suggests that embryonic stem cell-derived (ES) exosomes, nanoscale extracellular vesicles that carry proteins, messenger RNA, and microRNAs, may be able to mitigate some of the cardio- and cytotoxic effects of DOX without reducing its efficacy. The present study examined the effects of combined treatment with DOX (1 μM) and ES exosomes (10 μg/mL) on three cancer cell lines, MCF7, MDA-MB-231, and MDA-MB-468. The DOX/ES exosomes treatment increased cell death and increased apoptosis specifically compared to control, as measured via dye exclusion assay and flow cytometry. The treatment also decreased cell growth compared to control, as measured via MTS cell proliferation assay. In addition, DOX/ES exosomes treatment also increased expression of pro-apoptotic Bax while decreasing the expression of anti-apoptotic Bcl-2, as measured via Western blot. Finally, the DOX/ES exosomes treatment decreased expression of miR-200c, a microRNA associated with preventing epithelial-mesenchymal transition, a process that is integral to metastasis. Although increased cell death and apoptosis and decreased cell proliferation implies that the DOX/exosomes treatment is effective against cancer, the decrease in miR-200c expression may suggest the opposite and will be investigated further in future studies. Even so, the results of this study suggest that exosomes may be an important component to reduce the harmful effects of cancer treatment in the future.
4

Sumatriptan Induced Coronary Vasospasm

Finniss, Mathew Christopher, MD, Bains, Nimrat, MD, Shamas, Shelby, DO 05 April 2018 (has links)
Migraines are recurrent debilitating headaches that predominately afflict young women. The pathophysiology of migraines is still not well understood but is related to neurovascular dysfunction. Meningeal blood vessel dilation, extravasation of pro-inflammatory cytokines and activation of trigeminal afferent neurons promote migraine generation. Serotonin (5-HT) is an endogenous vasoactive peptide with diverse physiology. In meningeal blood vessels, serotonin causes vasoconstriction, however in coronary arteries, serotonin causes both vasodilation and vasoconstriction. In diseased coronary arteries, with impaired endothelial function, vasoconstriction predominates. Selective meningeal blood vessel serotonin agonists, termed ‘triptans’, have become the therapy of choice for migraine headaches. However, due to their constrictive effects on the coronary vasculature, triptans are not recommend in patients with known coronary artery disease, patients with greater than one coronary artery risk factor or patients with atherosclerotic cardiovascular disease risk (ASCVD) greater than ten percent. Triptan associated chest pain is a well-known phenomenon. Age, hypertension, dyspepsia, and Raynauds phenomenon are associated with triptan associated chest pain. Hypertension is the strongest risk factor for triptan associated chest pain in males. Although triptan associated chest pain is assumed to be cardiovascular due to its constrictive effect on the coronary vasculature, only a few cases of myocardial infarction, with documented ST elevation and/or troponin elevation, have been reported. Herein we report the case of a male patient with inferolateral ST elevation myocardial infarction, within minutes of receiving subcutaneous sumatriptan for migraine headache. The patient had a normal echocardiogram and electrocardiogram prior to sumatriptan use, and a normal cardiac catheterization afterwards.
5

The Effect of Caffeine and Ethanol on Flatworm Regeneration.

Collins, Erica Leighanne 14 August 2007 (has links) (PDF)
Flatworms, or planarian, have a high potential for regeneration and have been used as a model to investigate regeneration and stem cell biology for over a century. Chemicals, temperature, and seasonal factors can influence planarian regeneration. Caffeine and ethanol are two widely used drugs and their effect on flatworm regeneration was evaluated in this experiment. Non-toxic levels of caffeine, a stimulant, and ethanol, a depressant, were determined. The tails of the flatworms were removed and the regeneration stage was analyzed every 3 days for 15 days to see the effect of these drugs alone and in combination on regeneration. For day 3 and day 6, there was a significant difference between the ethanol treatment and the other treatments (positive control, caffeine treatment, and combined treatment). The ethanol treatment showed a delay in the initiation of regeneration but caught up to the other treatments by day 15.
6

Studies on a 50S Ribosomal Precursor Particle as a Substrate for <em>erm </em>E Methyltransferase Enzyme in <em>Staphylococcus aureus </em>.

Pokkunuri, Indira 05 May 2007 (has links) (PDF)
Erythromycin is a macrolide antibiotic that inhibits not only mRNA translation but also 50S ribosomal subunit assembly in bacterial cells. An important mechanism of erythromycin resistance is the methylation of 23S rRNA by erm methyl transferase enzymes. We are interested in investigating the true substrate for methylation because it is known from our work and the work of others that fully assembled 50S subunits are not substrates for methylation. We have published a model for 50S ribosomal subunit formation where, the precursor particle that accumulates in erythromycin treated cells is a target for methyl transferase activity. Current studies are aimed at investigating the role of the precursor particle as substrate for ermE methyltransferase activity and the competition between this enzyme and erythromycin for the 50S precursor particle. Slot-blot hybridization experiments have identified the presence of 23S rRNA in the 50S precursor region. Quantitation of the 23S rRNA in these blots also revealed that the percentage of the precursor increased as the concentration of erythromycin was increased in the growth media. Ribosomal proteins of S. aureus were studied by two-dimensional gel electrophoresis. Protein content of the 50S precursor particle was analyzed by MALDI-TOF. These studies have identified 16 50S ribosomal proteins in the precursor region. Methyltransferase assays showed that 50S precursor particle was a substrate for ermE methyltransferase. Importantly, RNA that is already assembled into 50S subunits was not a substrate for the enzyme. Inhibition curves showed that macrolide, lincosamide, and streptogramin B (MLSB) drugs bound to the precursor particle with similar affinity and inhibited the ermE methyltransferase activity. Competition experiments suggested that the enzyme can displace erythromycin from the 50S precursor particle and that erm methyltransferase has a lower association constant for the precursor particle compared to that of the erythromycin. This suggests that higher concentrations of erythromycin are needed to combat erm induced resistance. These studies shed light on the interaction of ermE methyltransferase and erythromycin in the clinically important pathogen S. aureus.
7

N-methyl 4-methyl amphetamine N-alkyl chain extension differentially affects ion flux at the human dopamine and norepinephrine transporters

Harris, Alan C., Jr. 01 January 2016 (has links)
Amphetamine (AMPH) and its derivatives embody a remarkable breadth of pharmacology. These molecules exert their effects, both therapeutic and pathological, at the human monoamine transporters, which tune synaptic dynamics by evacuating monoamine neuromodulators from the synapse subsequent to neuronal impulses. These transporters are electrogenic, and the transporter-mediated current can be correlated to a surrogate measure of the change in membrane voltage: Ca++ currents from co-transfected L-type Ca++ channels. The present work makes use of this assay, with which it is possible to derive pharmacodynamic metrics from both substrates and inhibitors. This work presents data on a heretofore-unstudied class of amphetamine analogs: the enantiomers of N-Me 4-Me AMPH and N-Et 4-Me AMPH. Remarkably, while both enantiomers of the N-Me version of this compound function as substrates at hDAT, both enantiomers of the N-Et version are inhibitors. This switch does not occur at hNET, where all enantiomers of both N-Me and N-Et 4-Me AMPH function as substrates. Further, (S)-N-Et 4-Me AMPH is a substrate at dDAT. EC50 and IC50 values for all drugs at both transporters are presented. I present the results of super-resolution microscopic co-localization studies on the plasmalemmal spatial relation of the human dopamine transporter and voltage gated calcium channel, L-type 1.2 (CaV1.2). I discuss future aims toward a unified understanding of the mechanisms of monoamine transporter function, with an emphasis on what amphetamine can illuminate in this regard.
8

Novel Insights Into The Contribution Of Cellular Senescence To Cancer Therapy: Reversibility, Dormancy And Senolysis.

Saleh, Tareq 01 January 2018 (has links)
Cellular senescence a specialized form of growth arrest that contributes to the pathogenesis of several aging-related disorders including cancer. While by definition tumor cells are considered immortalized, they can undergo senescence when exposed to conventional and targeted cancer therapy. Therapy-Induced Senescence (TIS) represents a fundamental response to therapy and impacts its outcomes. However, TIS has been considered a positive therapeutic goal since senescent tumor cells are expected to enter a state of permanent growth abrogation. In this work we examined the hypothesis that a subpopulation of senescent cells can re-acquire proliferative potential after a state of senescent dormancy, indicating that senescence is not obligatorily an irreversible process. Our observations indicate that H460 non-small cell lung cancer cells induced into senescence by exposure to etoposide, and enriched based on β-galactosidase staining and size, were shown to recover reproductive capacity, which was accompanied by resolution of the DNA-damage-response (downregulation of p53 and p21Cip1 induction), attenuation of the Senescence-associated Secretory Phenotype (SASP). To overcome the reservation that the newly dividing cells may not have been derived from the senescent population and in an effort to establish that escape from TIS is feasible, tumor cells induced into senescence by chemotherapy were enriched for senescence by flow cytometry; the subsequent division of senescent cells was demonstrable utilizing both real-time, live microscopy and High Speed Live Cell Interferometry (HSLCI). Furthermore, sorted senescent cells were observed to form tumors when implanted in immune deficient mice and with a significant delay in immunecompetent mice. As chemotherapy induced senescent cells have been identified in patient tumors, it is reasonable to propose that tumor cells that escape from senescence could contribute to disease recurrence. In addition, therapy-induced senescence could prove to reflect one form of tumor dormancy. Recently, ABT263 has been used as a senolytic drug, effectively eliminating senescent cells from aging-related animal models. Here, we utilize ABT263 in a two-hit approach to eliminate senescent tumor cells that persistent after exposure to chemotherapy. ABT263 results in the killing of senescent tumor cells in a concentration-dependent manner and shifts the response towards apoptotic cell death. Furthermore, sequential administration of ABT263 interferes with the ability of senescent tumor cells to recover growth potential. These results indicate that senescent tumor cells can contribute to cancer relapse by acquiring proliferative properties and that senolytic therapy allows for the clearance of dormant senescent tumor cells and will potentially decrease cancer recurrence rates.
9

Nanofabrication and Spectroscopy of Magnetic Nanostructures Using a Focused Ion Beam

Hadjikhani, Ali 08 July 2016 (has links)
This research used a focused ion beam in order to fabricate record small nano-magnetic structures, investigate the properties of magnetic materials in the rarely studied range of nanometer size, and exploit their extraordinary characteristics in medicine and nano-electronics. This study consists of two parts: (i) Fabrication and study of record small magnetic tunnel junctions (ii) Introduction of a novel method for detection of magnetoelectric nanoparticles (MENs) in the tissue. A key challenge in further scaling of CMOS devices is being able to perform non-volatile logic with near zero power consumption. Sub-10-nm nanomagnetic spin transfer torque (STT) magnetic tunneling junctions (MTJs) have the potential for a universal memory that can address this key challenge. The main problem is to decrease the switching current density. This research studied these structures in sub-10-nm size range. In this range, spin related excitations consume considerably smaller amounts of energy as compared to the larger scale. This research concluded that as predicted a decrease in switching current superior to that of the linear scaling will happen in this size range. Magneto-electric nanoparticles (MENs) can be used to directly couple intrinsic electric-field-driven processes with external magnetic fields for controlling neural activity deep in the brain. These particles have been proven to be capable of inducing deep brain stimulation non-invasively. Furthermore, these magneto-electric nano-particles can be used for targeted drug delivery and are contenders to replace conventional chemotherapy. The circulatory system can deliver a drug to almost every cell in the body; however, delivering the drug specifically into the tumor cell and then releasing it on demand remains a formidable task. Nanomedicine can accomplish this, but ensuring that the drug is released at an appropriate rate once at the target site is an important task. In order to have a complete understanding of the behavior of these MENs when injected into the body, a comprehensive bio-distribution study was performed. This study introduced a novel spectroscopy method for tracing the nanoparticles in the bloodstream. This study investigated the post injection distribution of the MENs in vital organs throughout a period of two months.
10

A Pilot Study of the Pharmacogenetics of Ketamine-Induced Emergence Phenomena: A Dissertation

Aroke, Edwin N. 21 April 2016 (has links)
Background: Up to 55% of patients administered ketamine, experience an emergence phenomena (EP) that closely mimics schizophrenia and increases their risk of injury. While genetics accounts for about 50% of severe adverse drug reactions, no studies have investigated genetic association of ketamine-induced EP in healthy patients. Ketamine is metabolized by CYP 2B6 enzymes and CYP 2B^8^ allele significantly alter ketamine metabolism. In addition, ketamine exerts most of its effects by inhibiting the N-methyl-D-aspartate receptor (NMADR), and NMDAR genes (GRIN2B) are associated with learning and memory impairment and schizophrenia. Purpose: To investigate the relationship between CYP2B6*6 and GRIN2B single nucleotide polymorphisms (SNPs) and ketamine-induced emergence phenomena (EP). Methods: This cross-sectional pharmacogenetic study recruited 75 patients having minor orthopedic, hand, foot, anorectal surgeries from two outpatient surgical centers. EP was measured with the Clinician Administered Dissociative State Scale (CADSS). DNA was genotyped using standard Taqman assays and protocols. Genetic association of CYP2B6*6 and GRIN2B (rs1019385 & rs1806191) SNPs and ketamine induced EP occurrence and severity were tested using multivariate logistic and linear regression, adjusting for age, ketamine dose, duration of anesthesia, and time since ketamine administration. Results: Forty-seven patients (63%) received ketamine and were genotyped. Nineteen EP cases were identified (CADSS > 4), leaving 28 non-EP controls. For our population, CADSS has an internal consistency reliability Cronbach’s alpha of 0.82, and could reliably distinguish ketamine from non-ketamine cases. Occurrence and severity of EP were not associated with CYP2B6*6 or GRIN2B (p > 0.1). Models removing genotype and containing age, ketamine dose, duration of v anesthesia, and time since ketamine administration significantly predicted EP occurrence (p = 0.001) and severity (p = 0.007). Presence and severity of EP did not affect patient satisfaction with care. Discussion: Younger age, higher dose and longer duration of anesthesia significantly predicted EP occurrence and severity among our sample. This study provides effect size estimates useful for the design of adequately powered future genetic association studies. The feasibility of recruitment from patients undergoing elective, outpatient surgeries and ease of post-operative EP assessment with CADSS supports our approach. However, the small sample size may have limited about ability to determine significant differences. Conclusion: Fully powered studies are needed to investigate this important phenomena. Determining factors for anesthesia-related EP symptoms may reduce risks and costs associated with this adverse medication effect.

Page generated in 0.1246 seconds