• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 19
  • 2
  • Tagged with
  • 222
  • 222
  • 152
  • 149
  • 146
  • 63
  • 58
  • 58
  • 58
  • 57
  • 56
  • 54
  • 53
  • 52
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Computational prediction of enhanced solubility of poorly aqueous soluble drugs prepared by hot melt method

Kondepudi, Karthik Chalam 01 January 2015 (has links)
Solubility is the concentration of a solute in a saturated solution at a given temperature and pressure. Solubility of a drug in aqueous media is a pre-requisite to achieve desired concentration of a drug in the systemic circulation. Low aqueous solubility is a major problem encountered with formulation development of recently designed new chemical entities. Solubility of poorly soluble drugs is enhanced by physical and chemical modifications of drug. Shake flask method is the most commonly used experimental method to determine solubility. However, this method has several limitations. A single solubility experiment can go on for several days and even weeks. Besides this, a large amount of drug is required to carry out the experiment. In order to overcome this and make initial screening easier, computational method can be used to predict solubility. In this study, the solubility of 12 small molecules of BCS class II having a wide range of physicochemical properties were studied to enhance their solubility by hot melt method. Three different grades of PEG (1450, 4000, 8000), PVP K17 and Urea as the hydrophilic carriers was employed for the solubility enhancement. The overall objective of this investigation is to develop a model that could estimate enhanced solubility using physicochemical descriptors. Multiple linear regression (MLR), a statistical tool, was used to generate a equation for the solubility by correlating physicochemical properties of the drug like- molecular size, logP, pKa, HBA, HBD, melting point, polar surface area, and number of rotatable bonds. Solubility enhancement is also influenced by the carrier used, we included the physicochemical properties of the carriers like molecular weight and solubility parameter in the development of the model. MLR analysis model, resulted in an equation, where, Log solubility = 5.982-0.010 MW (drug)-0.452 LogP-0.320 HBA-0.095 ?solubility parameter+0.015 MV. A regression analysis yielded a good fit with a regression value (adjusted R2) of 0.74. The model has been validated by leave one out method. This model has the potential to estimate the solubility of a physically modified drug in screening stages of drug development.
162

Apparent dissolution rate enhancement of poorly-water soluble drugs by adsorption technique

Vutukuru, Naresh Kumar Reddy 01 January 2015 (has links)
Nearly 70% of the new chemical entities (NCE’s) discovered are poorly-water soluble drugs and the number of poorly-water soluble drugs are increasing rapidly in the drug discovery. Most of the NCE’s are lipophilic and have dissolution rate issues. Low dissolution rate of the drugs result in poor bioavailability. To overcome poor bioavailability, an adsorption technique is developed to enhance the apparent dissolution rate of poorly-water soluble drugs. In this study, two poor-water soluble model drugs, ibuprofen and carvedilol were used. Methanol, DMF, DMSO and PEG400 were used as solvents and microcrystalline cellulose was used as an adsorbent. Pure model drugs, physical mixtures and prepared composites were characterized by using FTIR, DSC, XRD and dissolution testing. Results showed that the composites prepared with solvents DMF, DMSO and PEG400 showed enhancement in dissolution rates of two model drugs. Characterization of the composites prepared by using non-volatile solvents showed successful conversion of crystalline model drugs into solution state. Whereas, composites prepared by using volatile solvent showed similar results like physical mixtures and pure drug. Ibuprofen composites containing DMF, DMSO and PEG400 showed 9.4, 7.4 and 1.8 folds of increase in apparent dissolution rate, respectively. Whereas carvedilol composites containing DMF and DMSO showed 11.52 and 3.4 folds of increase in apparent dissolution rate. Four months of stability study were conducted on prepared composites at both 40°C and room temperature. It was observed that prepared composites were stable after 4 months and exhibited similar dissolution rate. In conclusion, the use of non-volatile solvents disrupted the crystal structure but also retained the drug in solution state which in turn enhanced the apparent dissolution rate of model drugs used. From the observed results we conclude that this method has a potential to replace existing techniques to enhance the apparent dissolution rate of the drug and stability of the composites.
163

A novel intracellular protein delivery system - Magnesium phosphate nanoparticles with cationic lipid coating for catalase intracellular delivery

Fang, Yunzhou 01 January 2014 (has links)
Protein therapeutics have great potential in treating human disease, especially for those caused by alternations in the functions of intracellular proteins. However, clinical use of protein by intracellular delivery has been hampered by the instability due to proteins' physicochemical properties, and some barriers in the delivery pathway. This study was to prepare and test a novel intracellular protein delivery system - magnesium phosphate nanoparticles with cationic lipid coating for catalase intracellular delivery (LP MgP NP-CAT), and investigate whether it can release the encapsulated catalase to cytosol. LP MgP NP-CAT was designed, prepared and characterized, showing that it had an average diameter around 300 nm and zeta potential around +40mV. The pH - triggered catalase release from LP MgP NP-CAT was determined by a hydrogen peroxide degradation assay, where the concentration of remaining hydrogen peroxide was measured by UV-Vis spectroscopy, indicating catalase was released in response to the drop of pH, which was confirmed by the morphology change of LP MgP NP-CAT observed by transmission electron microscopy. The in vitro catalase release behavior was conducted on MCF-7 cells and EA.hy926 cells. LP MgP NP-CAT was delivered into MCF-7 cells and the release behavior was determined by the resultant resistance of the cells against hydrogen peroxide using MTS cell viability assay. The delivery of LP MgP NP-CAT into EA.hy926 cells was determined by the decrease of the reactive oxygen species level. Both of the studies showed that catalase was successfully delivered and released which is supported by the reduction of hydrogen peroxide.
164

Preparation of amorphous forms to increase the solubility of poorly soluble drugs using spray drying

Nannapaneni, Vijaysri 01 January 2011 (has links)
Spray drying is widely used in enhancing the aqueous solubility of poorly soluble compounds. In this study, the mechanism of solubility enhancement was characterized using three model drugs-naproxen, ketoprofen and furosemide. Physical mixtures of the model drug with polyvinylpyrrolidine and spray dried composites were subjected to Fourier Transform Infrared Sprectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and Powder X-ray Diffraction (XRPD). The data showed that the crystalline model drugs were converted to amorphous form upon spray drying, whereas the physical mixtures did not change their crystallinity. The effect of the amorphous forms produced by Spray drying on apparent solubility and intrinsic dissolution rate was determined. All the spray dried composites exhibited higher apparent solubility and intrinsic dissolution rate when compared to the pure drugs and their physical mixtures. The stability of the spray dried composites upon storage was also determined. The amorphous nature of the compounds in the spray dried composites were retained during 3 months storage as shown by FTIR, DSC and XRPD characterization and their apparent solubility and intrinsic dissolution rates also did not change.
165

Role of Type 2 Cannabinoid Receptor (CB2) in Atherosclerosis.

Netherland, Courtney Denise 17 December 2011 (has links) (PDF)
Atherosclerosis is a macrophage-dominated nonresolving inflammatory disease of the arterial wall. Macrophage processes, including apoptosis, influence lesion development in atherosclerosis. Cannabinoids, compounds structurally related to Δ9-tetrahydrocannabinol (THC), the active ingredient in marijuana, exert their effects through cannabinoid receptors, CB1 and CB2. Cannabinoid treatment, THC or Win55,212-2, reduces atherosclerosis in ApoE-null mice by a mechanism thought to involve CB2. However, the exact role of CB2 in atherosclerosis remains unclear. We found that CB2-null macrophages are resistant to oxysterol/oxLDL-induced apoptosis leading us to hypothesize that CB2 may modulate macrophage apoptosis in atherosclerosis. To determine the functions of CB2 in atherosclerosis, we fed low density lipoprotein receptor-null (Ldlr-/-) and Ldlr-/- mice genetically deficient in CB2, an atherogenic diet for 8 and 12 weeks. CB2 deficiency did not significantly affect aortic root lesion area after 8 or 12 weeks; however, after 12 weeks, CB2-deficient lesions displayed increased lesional macrophage and smooth muscle cell (SMC) content and a ~2-fold reduction in lesional apoptosis. CB2-deficienct lesions also displayed reduced collagen content and elevated elastin fiber fragmentation that was associated with elevated levels of the extracellular matrix degrading enzyme, matrix metalloproteinase 9 (MMP9). These results demonstrate that although CB2 signaling does not affect atherosclerotic lesion size it does modulate lesional apoptosis, cellularity and ECM composition. Ldlr-/- and CB2-deficient Ldlr-/- mice were also subjected to daily treatments with Win55,212-2, a synthetic cannabinoid, over the last 2 weeks of an 8 week atherogenic diet to identify CB2-dependent and CB2-independent effects of cannabinoid receptor stimulation on atherosclerosis. Win55,212-2 did not affect hypercholesterolemia, aortic root lesion area, lesional macrophage infiltration, or ECM composition in either genotype but did significantly reduce total plasma triglyceride levels and lesional SMC content, independent of CB2. Surprisingly, lesional apoptosis was dose-dependently repressed by Win55,212-2 in Ldlr-/- mice by a CB2-dependent mechanism. All together, these results support the suggestion that CB2 may be a target for novel therapies aimed at modulating lesional apoptosis and cellularity to increase lesion stability and reduce the vulnerability to rupture.
166

Exploring the effect of alpha2 receptor on brain 5-HT via a mechanism-based pharmacodynamic model

Sun, Jingjing 01 January 2012 (has links) (PDF)
Purpose: 5-hydroxytryptamine (5-HT) is an important neurotransmitter in depression. It is believed that α 1 and α 2 adrenoceptors mediate the 5-HT level in the brain. The mechanism is complex and not well explored. Especially in different combination treatments, the receptor systems may show varied modulation capability. Additionally, some research has suggested that α 2 heteroceptors may contribute to the time delay problem in dual depression treatment which is thought as the time needed for certain inhibition receptor to get desensitized. We hypothesized that the α 2 adrenoceptors had inhibition effect on 5-HT level in dorsal raphé nucleus (DRN), Prefrontal cortex (PFC) and Hippocampus (HP) with the dual reuptake inhibition. The present study was undertaken to explore the effect of BRL44408 (α 2 receptor antagonist) on 5-HT level in rat PFC, DRN and HP under dual antidepressant with blocking the α 1 receptor. Method: Serotonin reuptake inhibitor and norepinephrine reuptake inhibitor were used to mimic the dual reuptake inhibition antidepressant. To differentiate the α 2 adrenoceptors effect from al adrenoceptors effect, prazosin, an antagonist of α 1 adrenoceptors, was added to block α 1 adrenoceptors. Using the microdialysis method, the drug combination was examined in HP area and then DRN area to explore the drug effect on time course of 5-HT release in DRN and PFC. Based on the experiment results from DRN and PFC, a mechanism-based pharmacodynamic model was developed. Result: BRL44408 increased the serotonin (5-HT) level in rat PFC, DRN and HP to different degrees with the dual reuptake inhibition (p < 0.05). The overall model reasonably captured the time course of 5-HT in both DRN and PFC with different dose schemes of BRL44408. The model predicted EC50 of BRL44408 (0.0075 µM) for the α 2 heteroreceptor which control PFC 5-HT is close to the reported value of BRL44408 for α 2 adrenorceptor (0.008 µM). However, the model predicted EC50 of BRL44408 on the α 2 heteroreceptor which control DRN 5-HT need to be explained. Simulation result from this model suggested varied modulation capability of α 2 adrenoceptors on the 5-HT in DRN and the 5-HT in PFC. Conclusion: α 2 heteroceptor play a role in regulation 5-HT level under dual reuptake inhibition. Further exploration may bring a potential target for depression treatment. The mechanism model was developed to characterize and better understand the neurotransmitter mechanisms, providing estimations of various parameters of the disease related receptor system.
167

Soluble and Functional Overexpression of the Ligand Binding Domain of Mouse Aryl Hydrocarbon Receptor in <i>E.Coli</i>

Ponnakanti, Himaja 01 January 2017 (has links) (PDF)
The aryl hydrocarbon receptor (AhR) is a cytosolic ligand-activated transcription factor whose toxicity and carcinogenesis is mediated through various polyaromatic hydrocarbons and other environmental pollutants. The role of AhR in carcinogenesis is an area of concern due its altered levels in various tumors. AhR binds structurally diverse ligands and may elicit different responses upon ligand binding. The crystal structure of mouse AhR PAS-A domain was already obtained due to the robustness of mouse AhR in comparison to human. There is a possibility of overexpressing mouse AhR ligand binding domain in its soluble and functional form, which could be used to perform ligand binding studies. This forms the aim of this thesis. Mouse AhR ligand binding domain was constructed as mAhR aa211-384, which was purified under native conditions with the use of 6 histidine tag but soluble overexpression was not possible. Thus a solubility enhancing tag called maltose binding protein (MBP) was used for purification of mAhR aa211-384 under native conditions, which still did not yield soluble overexpression. The strategy was modified to solubilize the protein by denaturation with the use of 8M Urea, which solubilized the protein but included an issue of protein binding to column. Subsequent use of an even stronger denaturant, 6M guanidine hydrochloride, solubilized most of the protein and purified mAhR aa211-384 in huge amount. Successful refolding of mAhR aa211-384 with the help of MBP was made possible by gradual reduction of denaturant in the presence of arginine, but 6 histidine tag failed to refold the protein. The refolded protein was tested for its secondary structure by circular dichroism. Thus, mAhR aa211-384 was solubilized and purified under denaturing conditions with the help of both 6 histidine and MBP, however efficient refolding of mAhR aa211-384 was only possible with the help of MBP but not 6 histidine. The MBP-refolded mAhR aa211-384 stayed in solution even after the removal of 0.1 M arginine, thus confirming the effectiveness of MBP in protein refolding in comparison to 6 histidine tag.
168

Catalase-loaded liposomal magnesium phosphate nanoparticles for intracellular protein delivery

Naidu, Prathyusha 01 January 2016 (has links) (PDF)
Proteins are large biomolecules that have great therapeutic potential in treating many human diseases. Proteins exert higher specificity and more complicated functions; they are well endured and less inclined to evoke immune responses when compared to small molecule drugs. However, exogenous proteins when administered intravenously are prone to immune reactions. Chemical and enzymatic denaturation, and poor penetration into cells are some other challenges for clinical use of intracellular proteins. Proteins that enter cells through endocytosis will be eventually degraded in lysosomes if they do not escape the endosomal pathway before reaching lysosomes. Therefore, the development of protein delivery systems, including liposomal and/or polymeric nanoparticles would substantially facilitate the clinical use of proteins. This approach can protect the proteins from denaturation and immune reactions. Previously, our group has developed cationic lipid-coated magnesium phosphate nanoparticle (CAT-LP MgP NP) formulations to enhance the intracellular delivery of the protein, catalase. The objective of the current research is to improve the physicochemical properties of CAT-LP MgP NP. The magnesium phosphate (MgP) nanoparticles were prepared by water-in-oil micro emulsion precipitation. The cargo protein catalase was complexed with cationic liposome prepared by lipid hydration and extrusion. Then magnesium phosphate (MgP) nanoparticles were mixed with the catalase-complexed cationic liposome to form the final complexed CAT-LP MgP NP formulation. By sonication, extrusion and modification of the lipid composition, we have successfully prepared complexed CAT-LP MgP NP formulations of reduced size. The pH-sensitivity of the improved delivery system was observed at pH 6.0. Furthermore, the improved delivery system reduced the Reactive Oxygen Species (ROS) level inside EA.hy.926 cells (human umbilical vein endothelial cells) to 35% of the control, whereas the previously reported catalase formulation of our group reduced the ROS levels to 50%, indicating that the complexed formulation delivers functional catalase more efficiently into the EA.hy.926 cells. Complexed CAT-LP MgP NP with reduced size has delivered cargo protein more efficiently than encapsulated CAT-LP MgP NP.
169

Predicting aqueous solubility of pharmaceutical agents by solid dispersion prepared by solvent evaporation method

Patlolla, Karthik Reddy 01 January 2015 (has links) (PDF)
Solubility of active pharmaceutical agents is a crucial process that determines drug absorption and ultimately its bioavailability. Many of the new therapeutically beneficial compounds discovered are lipophilic requiring various solubility enhancement strategies to improve their solubility. Among these strategies, solubility enhancement using solid dispersions is a leading method. To obtain a desirable increase in the solubility of a poorly-soluble compound, a good understanding of the molecular descriptors influencing the enhancement of solubility is essential. Therefore, the major research objective was to determine the descriptors which significantly influence the solubility enhancement by solid dispersions. After enhancing the solubility of selected poorly-soluble model compounds, a regression analysis was performed to determine the correlation of molecular descriptors of the active agent, polymer, and solvent with solubility enhancement. The partition co-efficient, hydrogen bonding and solubility parameters of polymer and water were found to influence the aqueous solubility of the poorly-soluble compounds. Aqueous solubility of a compound had an inverse relation with difference in solubility parameters of polymer and water. Similarly partition coefficient was found to be inversely related to aqueous solubility. However for an increase in hydrogen bond acceptors present in pharmaceutical agents increased their solubility, while the higher number hydrogen bond donors resulted in lower solubility. This complexity can be attributed to the contribution of hydrogen bonding in a crystal lattice and in aqueous environment. In conclusion, the contribution of partition co-efficient, solubility parameter and hydrogen bonding were found to be significant for a given set of poorly-soluble model compounds selected with a wide range of descriptors. Several models estimating aqueous solubility of compounds have been employed as screening tool in drug development process. However, all such models were developed to estimate aqueous solubility of pure active agents. Hence, the second research objective was to develop a model that could estimate aqueous solubility of Active Pharmaceutical Ingredient (API) in solubility-enhanced solid dispersions. Using multiple linear regression, a computational model was developed using the molecular descriptors of poorly-soluble compound, polymer and water. S=(2.02*HBA)-(3.37*??)-(11.56*log?P )-(0.9*HBD)+119.66 The model showed a regression (R2) value of 0.858. Upon validation, the model estimated the aqueous solubility of 79% of the compositions evaluated with within 20% variability.
170

Human Cytochrome P450 3A4 Over-Expressing IEC-18 and MDCK Cell Lines as an In-Vitro Model to Assess Gut Permeability and the Enzyme Metabolism

Vangala, Swathi 01 January 2013 (has links) (PDF)
Purpose. The fate of an orally administered drug is dependent on many parameters before it can reach the systemic circulation, including drug absorption and first-pass metabolism in the gut and the liver. Mammalian cells lines such as MDCK and Caco-2 are commonly employed to assess drug permeability but they lack or have low expression level of drug metabolism enzyme expression such as CYP3A4, which contributes to significant first-pass gut and liver metabolism for many drugs. Consequently, these cell lines are not sufficient to integrate metabolism when assessing drug absorption. Here, we tested MDCK and IEC-18 cells transiently over-expressing CYP3A4 as models that can simultaneously assay a compound's permeability and metabolism potential in a single experiment. Method. A recombinant adenovirus carrying the hCYP3A4 cDNA was constructed according to Stratagene's AdEasy XL Adenoviral system. This adenovirus was used to transiently transfect hCYP3A4 into MDCK and IEC-18 cells. Western blot was performed to assess the level of hCYP3A4 expression in the wild type and CYP3A4 over-expressing IEC-18 and MDCK cells. In situ metabolism and transport studies were performed with wild-types and IEC-18-3A4 or MDCK-3A4 cells. Results. The amount of CYP3A4 present in MDCK-3A4 cells was 250 times to that of wild type cells which 1/4th the amount present in human liver microsomes. The amount of CYP3A4 present in IEC-18-3A4 cells was 150 times to that of wild type cells which 1/6th the amount present in human liver microsomes. In metabolism studies, there was higher formation of metabolites in cells transfected with hCYP3A4 compared to controls. In addition, apical to basal transport studies of several drugs in IEC-18-3A4 and MDCK-3A4 showed increased appearance of metabolites compared to the wild-type cells. Conclusions. This model may be a useful to assess the extent of drug absorption into systemic circulation after oral administration.

Page generated in 0.0727 seconds