• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 19
  • 2
  • Tagged with
  • 222
  • 222
  • 152
  • 149
  • 146
  • 63
  • 58
  • 58
  • 58
  • 57
  • 56
  • 54
  • 53
  • 52
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Synthesis and applications of functional magnetic polymer beads; synthesis and mass spectrometry analysis of model peptides

Zhao, Xiaoning 01 January 2012 (has links)
The first part of the thesis describes the synthesis and application of functional magnetic polymer beads. The traditional suspension polymerization approach was used to synthesize polystyrene-iron oxide (Fe 3 O 4 ) based magnetic beads. The beads were coupled to different surface functional groups. The Fe 3 O 4 particles were encapsulated into a polystyrene shell. The surface functional groups were generated by graft-polymerization with functional monomers. The average size of the beads was in the range of 100-500 μm. Chemical tests showed that the beads were stable in strong acid, strong base and polar solvent. The beads had a fast response to an external magnetic field. A self-emulsion-polymerization approach was developed to synthesize smaller magnetic beads with the - OH groups on the surface. A modified approach based on traditional suspension-polymerization was developed to synthesize acid-durable beads with more Fe 3 O 4 encapsulated inside the beads. A novel emulsion-suspension polymerization method was successfully developed to synthesize much smaller magnetic beads ( A new peptide synthesis approach was developed using functional magnetic beads as the resin for solid phase synthesis. In this application, synthesized magnetic beads were further modified by a two-step reaction. The amino group was anchored onto the surface of these beads, followed by coupling with the Rink amide linker. The resulting beads were used as the resin to synthesize several model peptides. The peptides were successfully synthesized, and the sequences were confirmed by mass spectrometry analysis. The yields of the peptides were comparable to those obtained from commercial Rink amide resin. The second part of the thesis describes the synthesis and mass spectrometry analysis of two series of model peptides. One series has the linear (non-cyclic) structure, A n K, KA n , P n K, and AcA n K. The other series contains cyclic peptides, c-Ac-DAKAK and c-Ac-DADapAK. All peptides were synthesized using solid phase peptide synthesis. The relative proton affinities of the model peptides were measured using the collision induced dissociation experiments using a triple quadrupole mass spectrometer. It was found that the effective proton affinity of a cyclic peptide was significantly reduced compared to a linear analogue. The reduced proton affinity implies an increased lipophilicity of the peptide.
192

Mechanisms of polymer adsorption in nanoparticle stabilization for poorly water soluble compounds

Wiser, Lauren Sample 01 January 2011 (has links)
In this dissertation, the mechanisms of nanosuspension stabilization via polymer adsorption on nanoparticle surface were investigated. As the electrokinetic behavior and colloidal stability depend on the surface characteristics, altering the surface adsorbed polymers affords the different surface properties of nanoparticles and leads to the insight on the mechanism of nanoparticle stabilization. Drug nanosuspensions were prepared by wet milling of drug with water as medium and polymers as stabilizers. Block copolymers were evaluated based on varying the hydrophobic and hydrophilic amounts, polymer concentration, and polymer affinity differences onto the nanoparticle surface. Specifically, block copolymers of ethylene oxide (EO) and propylene oxide (PO) with different EO chain lengths were used to modify the nanoparticle surface and investigate the mechanisms of stabilization by varying the ratio of hydrophobic (PO) and hydrophilic (EO) units. It was hypothesized that the PO chain of block copolymers adsorb at the solid-solution interface and the EO chain provides steric hindrance preventing aggregation. Block copolymer adsorption layer thicknesses were experimentally determined with adsorption layer thicknesses increasing from 4.7 to 9.5 nm as the number of EO increase from 26 to 133 monomer units. Nanoparticle aggregation occurred with insufficient polymer monolayer coverage and electrokinetic zeta potential greater than -20 mV. The amount of block copolymers on the surface of nanoparticles was quantified and the affinity of polymer adsorption increased as the copolymer hydrophobic units increased. The amount adsorbed and affinity provides a qualitative ranking of the affinities between a specific polymer and nanoparticle substrate to provide a method in determining the mechanism of stabilization, where specific functional groups for adsorption could be selected for maximum nanoparticle stability. A molecular modeling was conducted to visualize and support the mathematical model and the proposed mechanism of block copolymer adsorption onto a nanoparticle surface. The time lapse molecular modeling of a block copolymer in an aqueous media showed the hydrophobic units adsorbing onto the nanoparticle surface with the hydrophilic units projecting into the aqueous media. For the first time in pharmaceutical research, a systematic series of studies were conducted to elucidate the mechanisms of adsorption with both surface charge and polymer affinity analyses. A series of studies evaluating the adsorption properties polymer stabilizers provided useful information on how a block copolymer comprised of both hydrophilic and hydrophobic domains adsorbs onto an active pharmaceutical ingredient. A systematic set of experimental techniques were presented with novel analysis tools and predictors to construct stable nanoparticle formulations.
193

A tale of two small oxygenated molecules as told by photoelectron photoion coincidence spectroscopy

Easter, Chrissa Michelle Mozaffari 01 January 2016 (has links)
Photoelectron Photoion Coincidence (PEPICO) Spectroscopy studies on two small oxygenated species are presented here. Diethyl Ether (Et2O) and Acetic Anhydride (AcOAc) were chosen because of their and their fragments' relevance to combustion chemistry. The Imaging PEPICO (iPEPICO) experiment at the VUV beamline of the Swiss Light Source (SLS) was utilized to provide dissociative ionization data of the two molecules of interest. In this experiment, the unimolecular fragmentation pathways of energy selected ions can be studied with high energy resolution. The iPEPICO experimental setup also allows the measurement of the dissociation rates, which is indispensable to derive accurate thermochemical information on large ions. The experimental data on the fragmentation of ions of interest are then examined through modeling the experimental ion fractional abundances (breakdown curves, BDCs) and reaction rates, in a modeling framework based on the RRKM statistical theory. In our first project, diethyl ether was studied to provide the appearance energies of its daughter ions along with the dissociation pathways of the molecular ion, leading to thermochemical data (such as heats of formation) pertinent to combustion chemistry. A revised ionization energy (IE) differing from the reviewed National Institute of Standards and Technology (NIST) was also proposed. In the second project presented, AcOAc was also measured on the iPEPICO apparatus to understand its dissociative photoionization processes. The appearance of trace amounts of acetone in the ionization spectra, discrepancies in the statistical models of the branching ratios, and the quantum chemical calculations all point to the existence of a post-transition-state bifurcation, when a single TS separates multiple products, namely a methyl-loss fragment and acetone, as well. The acetyl cation, as well as the methyl cation at higher energies, appear to be formed by both parallel and sequential dissociation processes.
194

Use of various health care providers and the associated clinical and humanistic outcomes in an ambulatory Medicare population

Mai, Yvonne M. 01 January 2016 (has links)
Background: The use of complementary and alternative medicine (CAM) and other non-physician health care providers (dentists, optometrists, etc.) has steadily increased in the United States; however, the associated outcomes reported in the Medicare beneficiary population are limited. Objective: To evaluate the utilization of different healthcare providers by Medicare beneficiaries and assess resultant beneficiary outcomes. Methods: Fourteen outreach events targeting Medicare beneficiaries were conducted throughout Northern/Central California during the 2014 open enrollment period. Trained student pharmacists (working under licensed pharmacist supervision) provided beneficiaries with comprehensive medication therapy management (MTM) services. During each intervention, demographic, quality-of-life, health behavior and health provider/service utilization data were collected. Results: Of 620 respondents, 525 (84%) and 84 (14%) reported using at least one non-physician healthcare professional or CAM provider, respectively. Beneficiaries who reported using non-physician healthcare providers were significantly (p < 0.05) more likely to indicate being ‘very confident’ in managing their chronic health conditions. The number of providers seen with prescriptive authority was positively correlated with the number of prescription medications taken (r s =0.342, p < 0.001). The total number of providers seen was positively correlated with the number of drug-related issues identified (r s = 0.179, p < 0.001). Conclusion: Many beneficiaries have multiple chronic conditions and increasingly utilize a variety of healthcare professionals. As such, bridging the communication chasm between these professionals can improve humanistic outcomes and minimize medication related issues of Medicare beneficiaries. Coordinated care, a key strategy for improving healthcare delivery under the Affordable Care Act, is a step in the right direction.
195

Synthesis of poly(NIPAM-co-vmbpy) microspheres and transition metal monomers for metallopolymeric material construction

Tran-Math, Carolyn 01 January 2014 (has links)
Poly-N-isopropylacrylamide (PNIPAM) gels grafted to redox-active metal monomers undergo sudden expansion-contraction activity in response to change in environmental conditions, such as temperature, pH, ion concentration, and oxidation states of the metal. The relevance of these conditions to biological systems has garnered attention for PNIPAM-based polymer as potential biomedical materials. Candidate transition metal monomers containing ruthenium and nickel cores were designed and synthesized for copolymerization with NIPAM and cross-linker methylene-bis-acrylamide in order to attain metallopolymer microspheres with a high percentage of metal incorporation. Synthesis of 4-vinyl-4'-methyl-2,2'-bipyridine (vmbpy) was optimized from literature procedures for usage in the metal-containing monomers. Metal-containing monomers were then synthesized, purified, and characterized using electrospray ionization mass spectrometry (ESI-MS), proton nuclear magnetic resonance ( 1 H-NMR), X-ray diffraction, Ultraviolet-Visible light (UV-Vis) spectroscopy, and spectrofluorometry. While the Ru complex was pure and exhibited interesting photochemical properties, lability of the ligands on the Ni monomers resulted in complication of their synthesis. Polymer microspheres of poly(NIPAM-co-vmbpy), the cross-linked copolymer constructed from NIPAM and vmbpy monomers, were synthesized from modified emulsion polymerization procedures. Experimental setup parameters and conditions—such as the methods of injection of initiator and stirring, the time duration for incubating the emulsion, and the initiation temperature—were varied to assess their influences on the material properties of the final product. The polymers were tested for size and morphological uniformity by dynamic light scattering (DLS) and scanning electron microscopy (SEM). While varying the method of initiator injection had no measurable effect on the product, strong mechanical stirring and incubation of the polymer emulsion for 15-25 minutes at 71 °C procured similar polymer products. Consistent properties ensured the polymers' suitability for further material development. Preliminary morphological and spectroscopic characterization was conducted of metallopolymers made from Ru and Ni grafted to PNIPAM. Metallopolymers containing polypyridyl Ru cores exhibited desirable spectroscopic properties and spherical morphology.
196

Two approaches to the design and synthesis of bimetallic complexes

Tsai, Yi-Ju 01 January 2014 (has links)
Dirhodium complexes have been known for their catalytic reactivities toward C-H bond activation for nearly two decades. However, both experimental and theoretical studies have not given a clear explanation on the roles of each metal in the reactivities, largely due to the limited number of available bimetallic species. To study the system systematically, we set our goal to synthesize bimetallic complexes from two independent approaches. In the first approach, five N, N’ -diarylformamidines with symmetric or asymmetric substituents on the phenyl groups were synthesized and fully characterized. Formamidines without bulky substituents exhibited fluxionality in solution, which was proved by a single set of signal in 1 H NMR. In contrast, two sets of signals were observed for formamidines with bulky substituents in the ortho positions, indicating two major stereoisomers ( E and Z conformers) co-existing in solution. In solid state, strong stability for E conformers was gained from a pair of H bonds between two ligands facing each other. The phenomenon was observed for all ligands but N, N’ -bis(2,6-dimethylphenyl)formamidine ( L2 ), in which ligands in Z conformation were connected through H bonds from both sides of a ligand and an infinite chain structure formed in solid state. Metallation of the formamidines with diethylzinc and mesitylmagnesium bromide produced ten complexes in a variety of geometries, indicating a rich diversity in geometry for the formamidine family as coordination ligands. Among these complexes, three bimetallic complexes, with metal atoms close in distance, are potential candidates for the formation of complexes with metal-metal bonds. In each dizinc complex, two formamidinates (deprotonated formamidines) spanned over the two Zn atoms and brought them together, while in the dimagnesium complex, the two Mg atoms were bridged by two bromides, resulting in a Mg 2 Br 2 cubic core. In the other approach, two newly designed tripodal ligands were obtained at relatively high yields. Each of the ligands contains three branches built up from a central atom C or N. Lone pairs on the three branches of a deprotonated ligand working together could behave like a three-prong clamp and secure two metal centers closely in the pocket. A dichromium complex with a geometry matching our initial design was successfully synthesized. Meanwhile, two monometallic complexes, potential candidates as precursors to heterobimetallic complexes, were obtained.
197

Effect of rutaecarpine on caffeine pharmacokinetics in rats

Estari, Rohit Kumar 01 January 2015 (has links)
Many people like to drink caffeinated beverages, such as coffee or tea, but are sensitive to effects of caffeine. Therefore, they either avoid drinking caffeinated beverages altogether, or they avoid drinking them close to bedtime to prevent caffeine from interfering with their sleep. Ruta Cleanse and Ruta Sleep are natural supplements containing rutaecarpine that are designed to speed up the removal of caffeine from the blood. The recommendation is to take two capsules (equivalent to 100 mg rutaecarpine), as needed, to reduce caffeine level. Customers have reported positive effects, when taken 30 minutes to 2 hours prior. However, there is no scientific data to show how soon Ruta Cleanse and Ruta Sleep need to be taken in order for it to work. Therefore, we tested in rats the effect of single dose after 3, 6, 12, 24 hour and 7 doses (once a day, for seven days) of oral 100 mg/kg rutaecarpine (in suspension) induction on caffeine pharmacokinetics upon 15 mg/kg intravenous bolus and 20 mg/kg oral caffeine doses. The MROD data showed that as early as 3 hours after oral rutaecarpine administration, CYP1A2 activity in the liver tissue is increased by almost 3-fold compared to control rats and highest activity (9-fold compared to control) is found in the liver of rats administered with daily oral dose of rutaecarpine, for seven days. A suspension form of 100 mg/kg orally administered rutaecarpine significantly decreases the oral systemic exposure and mean residence time of caffeine and its metabolites (paraxanthine, theophylline and theobromine), as early as 3 hours before oral caffeine administration. The oral caffeine bioavailability (F) decreases by about 50% for the 3, 6 and 12-hour, 70% for the 24 hour and 80% for the one week daily rutaecarpine treatment groups. Currently we do not know the mechanism by which rutaecarpine significantly decreases the F values of caffeine upon oral administration. The systemic exposure of caffeine and its metabolites are also decreased when caffeine is given intravenously, though the effect is less pronounced compared to when caffeine is given orally. Interestingly, rutaecarpine achieves this effect without achieving detectable plasma level (less than 10 ng/mL). However, since the target organ for rutaecarpine is the liver, rutaecarpine can still induce CYP1A2 enzyme in the liver (as indicated by MROD data), without having to get absorbed into blood circulation.
198

Characterization and application of human pluripotent stem cell-derived neurons to evaluate the risk of developmental neurotoxicity with antiepileptic drugs in vitro

Cao, William Sam 01 January 2015 (has links) (PDF)
The risks of damage to the developing nervous system of many chemicals are not known because these studies often require costly and time-consuming multi-generational animal experiments. Pluripotent stem cell-based systems can facilitate developmental neurotoxicity studies because disturbances in nervous system development can be modeled in vitro. In this study, neurons derived from embryonal carcinoma (EC) and induced pluripotent stem (iPS) cells, were first characterized to establish their suitability for developmental neurotoxicity studies. The EC stem cell line, TERA2.cl.SP-12, was differentiated into neurons that expressed voltage-gated sodium and potassium channels as well as ionotropic GABA and glutamate receptors. These cells could also fire action potentials when stimulated electronically. However spontaneous action potentials were not observed. In contrast, pre-differentiated neurons derived from iPS cells fired evoked and spontaneous action potentials. Furthermore, iPS cell-derived neurons also expressed a wide array of functional voltage- and ligand-gated ion channels. Antiepileptic drugs (AEDs) are associated with developmental neurotoxicity. These agents can cause congenital malformations, cognitive deficits and behavioral impairment in children as a result of in utero exposure. The impact of four major AEDs, namely phenobarbital, valproic acid, carbamazepine and lamotrigine, on cell viability, cell cycle and differentiation of TERA2.cl.SP-12 into neurons was studied. All AEDs tested reduced differentiating stem cell viability. Valproic acid and carbamazepine increased apoptosis and reduced cell proliferation. A brief exposure to phenobarbital, valproic acid and lamotrigine at the start of differentiation impaired the subsequent generation of neurons. Additionally, the effect of transient exposure to phenobarbital and carbamazepine on neuronal maturation of iPS-derived neurons was investigated. Exposure to both AEDs resulted in diminished membrane potentials and reduced the proportion of cells that were able to fire action potentials spontaneously in culture. The data from these studies suggest that impairments in proliferation, differentiation and maturation of neurons derived from human stem cells may be sensitive indicators of neurodevelopmental disruption by these drugs that can result from in utero exposure. Furthermore, these findings suggest that the use of human pluripotent stem cells and neurons derived from them can reduce the time, cost and the number of animals used in toxicological research.
199

Study of DNA damage on DNA G-quadruplexes and biophysical evaluation of the effects of modified bases (lesions) on their conformation and stability

Aggrawal, Manali 01 January 2014 (has links) (PDF)
Exposure of DNA to reactive oxygen species (ROS) results in the modified nucleobases (lesions) as well as strand scissions under physiological conditions. Due to its lowest oxidation potential (1.29 eV), guanine is the most easily oxidisable nucleobase. Furthermore, it has been observed that the 5'-guanine in G-tracts (e.g. GGG) has even lower oxidation potential (1.00 V vs. NHE). One of the representative G-rich examples is telomeres that consist of repeating units of 5'-d [TTAGGG]-3' found at the ends of chromosomes. Telomeres play an important role in biological functions, serving as guardians of genome stability; however, their G-rich nature implies that they can be readily oxidized. So how does nature protect these biologically important regions from oxidation? We believe the formation of a secondary structure known as G-Quadruplex in telomeric regions can partly serve as a protective role. In the first part of this work, we investigated DNA G-Quadruplex damage under various oxidation conditions and compare the damage results with single-stranded telomeric sequences. Damage to G-Quadruplex is generally less than single strands and is condition dependent. Guanines are the primary damage sites, but damage of adenine and thymine is also possible. Based on our studies, telomeric DNA can be readily oxidized to produce DNA lesions. How do DNA lesions affect the conformation and the stability of telomeric G-Quadruplex DNA? In the second part, we sought to address this question using various biophysical methods. Several native (OxodG, OxodA, and abasic site) and non-native (8-NH 2 -dA and 8-Br-dA) lesions were tested. UV thermal denaturation and circular dichroism revealed that the conformation and the stability of G-Quadruplex DNA are dependent on the location and the type of lesion in the sequence. G-Quadruplex DNA containing OxodG maintains its conformation with a decreased stability. Abasic site in the TTA loop affects the conformation of G-Quadruplex DNA but shows little effect on its stability. An unexpected stabilization of telomeric G-Quadruplex DNA was observed when deoxyadenosine (dA) in the loops was replaced with its native oxidized form OxodA. This is the first example of native DNA lesion that increases the stability of G-Quadruplex DNA. Like OxodA lesion, 8-NH 2 -dA (a non native DNA lesion) increases the stability of G-Quadruplex DNA while 8-Br-dA only affects the stability in KCl but has no significant effect in NaCl. In addition, studies of the effect of OxodA lesion on the human telomerase activity using TRAP assay will be discussed.
200

Sex differences in aortic endothelial function of diabetic rats: Possible involvement of superoxide and nitric oxide production

Han, Xiaoyuan 01 January 2014 (has links) (PDF)
Little is known about the interaction between diabetes and sex in vasculature. This study was designed to investigate whether there were sex differences in rat aortic endothelial function in diabetes, and to examine the potential roles of superoxide and nitric oxide (NO) in this sex-specific effect. Two diabetic animal models were used: streptozotocin (STZ)-induced type 1 diabetic rats (at early and intermediate stages of disease) and Zucker type 2 diabetic fatty (ZDF) rats. Endothelium-dependent vasodilation (EDV) to acetylcholine (ACh) was measured in aortic rings pre-contracted with phenylephrine (PE) before and after pretreatment with MnTmPYP (10 mM), a superoxide scavenger, or apocynin (100 μM), a NADPH oxidase (Nox) inhibitor. Constrictor response curves (CRC) to PE (10 -8 to 10 -5 M) were also generated before and after pretreatment with L-NAME (200 μM), an endothelial nitric oxide synthase (eNOS) inhibitor, in the presence of indomethacin. In addition, the level of Nox (a potent source of superoxide) and eNOS mRNA expression were determined using real-time RT-PCR. STZ-induced diabetes impaired EDV to ACh to a greater extent in female than male aortae both at early and intermediate stage of disease (1- and 8- week, respectively). Incubation of aortic rings with L-NAME potentiated PE responses in all groups, but aortae from control females showed a greater potentiation of the PE response after NOS inhibition compared with others. STZ-diabetes reduced the extent of PE potentiation after L-NAME and the aortic eNOS mRNA expression in females to the same levels as seen in males. In addition, pre-incubation with MnTMPyP enhanced sensitivity to ACh only in diabetic females one week after STZ induction. Similarly, the levels of Nox1 mRNA expression were enhanced in STZ-induced diabetic females. Type 2 diabetes significantly impaired EDV in aortic rings from females; however, it potentiated the relaxation in male rats. Moreover, type 2 diabetes enhanced the extent of PE potentiation after blocking NOS with L-NAME in females. Pre-incubation of aortic rings with apocynin increased EDV only in diabetic female group. Accordingly, the levels of Nox1, Nox4 and eNOS mRNA expression were substantially enhanced in aorta of female ZDF rats compared to those in lean animals. In a conclusion, our data suggest that an elevation of superoxide and alteration of NO production may in part contribute to the predisposition of the female aorta to injury in diabetes.

Page generated in 0.0765 seconds