• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 8
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Un théorème de Gallagher pour la fonction de Möbius / A Gallagher theorem for the Moebius function

Betah, Mohamed Haye 29 November 2018 (has links)
La fonction de Möbius est définie par$$\mu(n)= \begin{cases} 1 & \textit{si $n=1$},\\ (-1)^k& \textit{si n est le produit de k nombres premiers distincts,}\\ 0 & \textit{si n contient un facteur carré. } \end{cases}$$Nous avons démontré que pour $x \ge \exp( 10^9) $ et $h=x^{1-\frac{1}{16000}}$, il existe dans chaque intervalle $[x-h,x]$ des entiers $n_1$ avec $\mu(n_1)=1$ et des entiers $n_2$ avec $\mu(n_2)=-1$.\\Ce résultat est une conséquence d'un résultat plus général.\\Pour $x \ge \exp(4\times 10^6)$, $\frac{1}{\sqrt{\log x}} \le \theta \le \frac{1}{2000}$, $h=x^{1-\theta}$ et $Q=(x/h)^{\frac{1}{20}}$, nous avons \\$$\sum_{q \leq Q} \log(Q/q)\sum_{\chi mod q}^*\left| \sum_{x.-h\le n \le x} \mu(n) \chi(n) \right| \leq 10^{20} h \theta \log(x) \exp( \frac{-1}{300 \theta}); $$la somme $\sum^*$ portant sur les caractères primitifs sauf l'éventuel caractère exceptionnel.\\Et en particulier pour $x \ge \exp( 10^9)$,$$ \left | \sum_{x.-x^{1-\frac{1}{16000}}\le n \le x} \mu(n) \right | \le \frac{1}{100} x^{1-\frac{1}{16000}}.\\$$ / The Möbius function is defined by$$\mu(n)= \begin{cases} 1 & \textit{if $n=1$},\\ (-1)^k& \textit{if n is a product of k distinct prime numbers,}\\ 0 & \textit{if n contains a square factor. } \end{cases}$$We demonstrate that for $x \ge \exp( 10^9) $ and $h=x^{1-\frac{1}{16000}}$, it exists in each interval $[x-h,x]$ integers $n_1$ with $\mu(n_1)=1$ and integers $n_2$ with $\mu(n_2)=-1$.\\This result is a consequence of a more general result. \\For $x \ge \exp(4\times 10^6)$, $\frac{1}{\sqrt{\log x}} \le \theta \le \frac{1}{2000}$, $h=x^{1-\theta}$ et $Q=(x/h)^{\frac{1}{20}}$, we have \\ $$\sum_{q \leq Q} \log(Q/q)\sum_{\chi mod q}^*\left| \sum_{x-h \le n \le x} \mu(n) \chi(n) \right| \leq 10^{20} h \theta \log(x) \exp( \frac{-1}{300 \theta}); $$the sum $\sum^*$ relating to primitive characters except for possible exceptional character.\\And in particular for $x \ge \exp( 10^9)$,$$\left | \sum_{x-.x^{1-\frac{1}{16000}}\le n \le x} \mu(n) \right | \le \frac{1}{100} x^{1-\frac{1}{16000}}.$$
22

Contributions à l'amélioration de la performance des conditions aux limites approchées pour des problèmes de couche mince en domaines non réguliers / Contributions to the performance’s improvement of approximate boundary conditions for problems with thin layer in corner domain

Auvray, Alexis 02 July 2018 (has links)
Les problèmes de transmission avec couche mince sont délicats à approcher numériquement, en raison de la nécessité de construire des maillages à l’échelle de la couche mince. Il est courant d’éviter ces difficultés en usant de problèmes avec conditions aux limites approchées — dites d’impédance. Si l’approximation des problèmes de transmission par des problèmes d’impédance s’avère performante dans le cas de domaines réguliers, elle l’est beaucoup moins lorsque ceux-ci comportent des coins ou arêtes. L’objet de cette thèse est de proposer de nouvelles conditions d’impédance, plus performantes, afin de corriger cette perte de performance. Pour cela, les développements asymptotiques des différents problèmes-modèles sont construits et étudiés afin de localiser avec précision l’origine de la perte, en lien avec les profils singuliers associés aux coins et arêtes. De nouvelles conditions d’impédance sont construites, de type Robin multi-échelle ou Venctel. D’abord étudiées en dimension 2, elles sont ensuite généralisées à certaines situations en dimension 3. Des simulations viennent confirmer l’efficience des méthodes théoriques. / Transmission problems with thin layer are delicate to approximate numerically, because of the necessity to build meshes on the scale of the thin layer. It is common to avoid these difficulties by using problems with approximate boundary conditions — also called impedance conditions. Whereas the approximation of transmission problems by impedance problems turns out to be successful in the case of smooth domains, the situation is less satisfactory in the presence of corners and edges. The goal of this thesis is to propose new impedance conditions, more efficient, to correct this lack of performance. For that purpose, the asymptotic expansions of the various models -problems are built and studied to locate exactly the origin of the loss, in connection with the singular profiles associated to corners and edges. New impedance conditions are built, of multi-scale Robin or Venctel types. At first studied in dimension 2, they are then generalized in certain situations in dimension 3. Simulations have been carried out to confirm the efficiency of the theoretical methods to some.
23

Localisation et cartographie simultanées en environnement extérieur à partir de données issues d'un radar panoramique hyperfréquence / Simultaneous localization and mapping in extensive outdoor environments from hyper-frequency radar measurements

Gérossier, Franck 05 June 2012 (has links)
Le SLAM, « Simultaneous Localisation And Mapping », représente à l'heure actuelle l'une des principales thématiques investiguées dans le domaine des robots mobiles autonomes. Il permet, à l'aide de capteurs extéroceptifs (laser, caméra, radar, etc.) et proprioceptifs (odomètre, gyromètre, etc.), de trouver l'orientation et la localisation d'un robot dans un environnement extérieur vaste, inconnu ou modifié, avec la possibilité de créer une carte au fur et à mesure des déplacements du véhicule. Les travaux de thèse décrits dans ce manuscrit s'intègrent dans ce courant de recherche. Ils visent à développer un SLAM innovant qui utilise un radar à modulation de fréquence continue « FMCW » comme capteur extéroceptif. Ce capteur est insensible aux conditions climatiques et possède une portée de détection importante. Néanmoins, c'est un capteur tournant qui, dans une utilisation mobile, va fournir des données corrompues par le déplacement du véhicule. Pour mener à bien ces travaux, nous avons proposés différentes contributions : une correction de la distorsion par l'utilisation de capteurs proprioceptifs ; le développement d'une technique de localisation et cartographie simultanées nommée RS-SLAM-FMT qui effectue un scan matching sur les observations et utilise un algorithme estimatif de type EKF-SLAM ; l'utilisation, pour la première fois en SLAM, de la mise en correspondance par Transformée de Fourier-Mellin pour réaliser l'opération de scan matching ; la création d'un outil expérimental pour déterminer la matrice de covariance associée aux observations ; des tests de robustesse de l'algorithme dans des conditions d'utilisation réelles : dans des zones avec un faible nombre de points d'intérêts, sur des parcours effectués à vitesse élevée, dans des environnements péri-urbains avec une forte densité d'objets mobiles ; la réalisation d'une application temps réel pour le test du procédé sur un véhicule d'exploration qui se déplace dans un environnement extérieur vaste. / Simultaneous Localization And Mapping (SLAM) is one of the main topics investigated in the field of autonomous mobile robots. It permits the Localization and mapping of a robot in a large outdoor environment, using exteroceptive (laser, camera, radar, etc.) and proprioceptive (odometer, gyroscope, etc.) sensors. The objective of this PhD thesis is to develop innovative SLAM that uses a radar frequency modulated continuous wave (FMCW) as an exteroceptive sensor. Microwave radar provides an alternative solution for environmental imaging and overcomes the shortcomings of laser, video and sonar sensors such as their high sensitivity to atmospheric conditions. However, data obtained with this rotating range sensor is adversely affected by the vehicle’s own movement. In order to efficiently manage the work, we propose : a correction, on-the-fly, of the rotating distortion with an algorithm that uses the proprioceptive sensors’ measurements ; development of a new technique for simultaneous localization and mapping named RS-SLAM-FMT ; for the first time in SLAM, the use of the Fourier-Mellin Transform provides an accurate and efficient way of computing the rigid transformation between consecutive scans ; creation of an experimental tool to determine the covariance matrix associated with the observations. It is based on an uncertainty analysis of a Fourier-Mellin image registration ; tests of the robustness of the SLAM algorithm in real-life conditions : in an environment containing a small number of points of interest, in real full speed driving conditions, in peri-urban environments with a high density of moving objects etc. ; creation and experiment of a real-time RS-SLAM-FMT implemented on a mobile exploration vehicle in an extensive outdoor environment.
24

Análise de carteiras em tempo discreto / Discrete time portfolio analysis

Kato, Fernando Hideki 14 April 2004 (has links)
Nesta dissertação, o modelo de seleção de carteiras de Markowitz será estendido com uma análise em tempo discreto e hipóteses mais realísticas. Um produto tensorial finito de densidades Erlang será usado para aproximar a densidade de probabilidade multivariada dos retornos discretos uniperiódicos de ativos dependentes. A Erlang é um caso particular da distribuição Gama. Uma mistura finita pode gerar densidades multimodais não-simétricas e o produto tensorial generaliza este conceito para dimensões maiores. Assumindo que a densidade multivariada foi independente e identicamente distribuída (i.i.d.) no passado, a aproximação pode ser calibrada com dados históricos usando o critério da máxima verossimilhança. Este é um problema de otimização em larga escala, mas com uma estrutura especial. Assumindo que esta densidade multivariada será i.i.d. no futuro, então a densidade dos retornos discretos de uma carteira de ativos com pesos não-negativos será uma mistura finita de densidades Erlang. O risco será calculado com a medida Downside Risk, que é convexa para determinados parâmetros, não é baseada em quantis, não causa a subestimação do risco e torna os problemas de otimização uni e multiperiódico convexos. O retorno discreto é uma variável aleatória multiplicativa ao longo do tempo. A distribuição multiperiódica dos retornos discretos de uma seqüência de T carteiras será uma mistura finita de distribuições Meijer G. Após uma mudança na medida de probabilidade para a composta média, é possível calcular o risco e o retorno, que levará à fronteira eficiente multiperiódica, na qual cada ponto representa uma ou mais seqüências ordenadas de T carteiras. As carteiras de cada seqüência devem ser calculadas do futuro para o presente, mantendo o retorno esperado no nível desejado, o qual pode ser função do tempo. Uma estratégia de alocação dinâmica de ativos é refazer os cálculos a cada período, usando as novas informações disponíveis. Se o horizonte de tempo tender a infinito, então a fronteira eficiente, na medida de probabilidade composta média, tenderá a um único ponto, dado pela carteira de Kelly, qualquer que seja a medida de risco. Para selecionar um dentre vários modelos de otimização de carteira, é necessário comparar seus desempenhos relativos. A fronteira eficiente de cada modelo deve ser traçada em seu respectivo gráfico. Como os pesos dos ativos das carteiras sobre estas curvas são conhecidos, é possível traçar todas as curvas em um mesmo gráfico. Para um dado retorno esperado, as carteiras eficientes dos modelos podem ser calculadas, e os retornos realizados e suas diferenças ao longo de um backtest podem ser comparados. / In this thesis, Markowitz’s portfolio selection model will be extended by means of a discrete time analysis and more realistic hypotheses. A finite tensor product of Erlang densities will be used to approximate the multivariate probability density function of the single-period discrete returns of dependent assets. The Erlang is a particular case of the Gamma distribution. A finite mixture can generate multimodal asymmetric densities and the tensor product generalizes this concept to higher dimensions. Assuming that the multivariate density was independent and identically distributed (i.i.d.) in the past, the approximation can be calibrated with historical data using the maximum likelihood criterion. This is a large-scale optimization problem, but with a special structure. Assuming that this multivariate density will be i.i.d. in the future, then the density of the discrete returns of a portfolio of assets with nonnegative weights will be a finite mixture of Erlang densities. The risk will be calculated with the Downside Risk measure, which is convex for certain parameters, is not based on quantiles, does not cause risk underestimation and makes the single and multiperiod optimization problems convex. The discrete return is a multiplicative random variable along the time. The multiperiod distribution of the discrete returns of a sequence of T portfolios will be a finite mixture of Meijer G distributions. After a change of the distribution to the average compound, it is possible to calculate the risk and the return, which will lead to the multiperiod efficient frontier, where each point represents one or more ordered sequences of T portfolios. The portfolios of each sequence must be calculated from the future to the present, keeping the expected return at the desired level, which can be a function of time. A dynamic asset allocation strategy is to redo the calculations at each period, using new available information. If the time horizon tends to infinite, then the efficient frontier, in the average compound probability measure, will tend to only one point, given by the Kelly’s portfolio, whatever the risk measure is. To select one among several portfolio optimization models, it is necessary to compare their relative performances. The efficient frontier of each model must be plotted in its respective graph. As the weights of the assets of the portfolios on these curves are known, it is possible to plot all curves in the same graph. For a given expected return, the efficient portfolios of the models can be calculated, and the realized returns and their differences along a backtest can be compared.
25

Análise de carteiras em tempo discreto / Discrete time portfolio analysis

Fernando Hideki Kato 14 April 2004 (has links)
Nesta dissertação, o modelo de seleção de carteiras de Markowitz será estendido com uma análise em tempo discreto e hipóteses mais realísticas. Um produto tensorial finito de densidades Erlang será usado para aproximar a densidade de probabilidade multivariada dos retornos discretos uniperiódicos de ativos dependentes. A Erlang é um caso particular da distribuição Gama. Uma mistura finita pode gerar densidades multimodais não-simétricas e o produto tensorial generaliza este conceito para dimensões maiores. Assumindo que a densidade multivariada foi independente e identicamente distribuída (i.i.d.) no passado, a aproximação pode ser calibrada com dados históricos usando o critério da máxima verossimilhança. Este é um problema de otimização em larga escala, mas com uma estrutura especial. Assumindo que esta densidade multivariada será i.i.d. no futuro, então a densidade dos retornos discretos de uma carteira de ativos com pesos não-negativos será uma mistura finita de densidades Erlang. O risco será calculado com a medida Downside Risk, que é convexa para determinados parâmetros, não é baseada em quantis, não causa a subestimação do risco e torna os problemas de otimização uni e multiperiódico convexos. O retorno discreto é uma variável aleatória multiplicativa ao longo do tempo. A distribuição multiperiódica dos retornos discretos de uma seqüência de T carteiras será uma mistura finita de distribuições Meijer G. Após uma mudança na medida de probabilidade para a composta média, é possível calcular o risco e o retorno, que levará à fronteira eficiente multiperiódica, na qual cada ponto representa uma ou mais seqüências ordenadas de T carteiras. As carteiras de cada seqüência devem ser calculadas do futuro para o presente, mantendo o retorno esperado no nível desejado, o qual pode ser função do tempo. Uma estratégia de alocação dinâmica de ativos é refazer os cálculos a cada período, usando as novas informações disponíveis. Se o horizonte de tempo tender a infinito, então a fronteira eficiente, na medida de probabilidade composta média, tenderá a um único ponto, dado pela carteira de Kelly, qualquer que seja a medida de risco. Para selecionar um dentre vários modelos de otimização de carteira, é necessário comparar seus desempenhos relativos. A fronteira eficiente de cada modelo deve ser traçada em seu respectivo gráfico. Como os pesos dos ativos das carteiras sobre estas curvas são conhecidos, é possível traçar todas as curvas em um mesmo gráfico. Para um dado retorno esperado, as carteiras eficientes dos modelos podem ser calculadas, e os retornos realizados e suas diferenças ao longo de um backtest podem ser comparados. / In this thesis, Markowitz’s portfolio selection model will be extended by means of a discrete time analysis and more realistic hypotheses. A finite tensor product of Erlang densities will be used to approximate the multivariate probability density function of the single-period discrete returns of dependent assets. The Erlang is a particular case of the Gamma distribution. A finite mixture can generate multimodal asymmetric densities and the tensor product generalizes this concept to higher dimensions. Assuming that the multivariate density was independent and identically distributed (i.i.d.) in the past, the approximation can be calibrated with historical data using the maximum likelihood criterion. This is a large-scale optimization problem, but with a special structure. Assuming that this multivariate density will be i.i.d. in the future, then the density of the discrete returns of a portfolio of assets with nonnegative weights will be a finite mixture of Erlang densities. The risk will be calculated with the Downside Risk measure, which is convex for certain parameters, is not based on quantiles, does not cause risk underestimation and makes the single and multiperiod optimization problems convex. The discrete return is a multiplicative random variable along the time. The multiperiod distribution of the discrete returns of a sequence of T portfolios will be a finite mixture of Meijer G distributions. After a change of the distribution to the average compound, it is possible to calculate the risk and the return, which will lead to the multiperiod efficient frontier, where each point represents one or more ordered sequences of T portfolios. The portfolios of each sequence must be calculated from the future to the present, keeping the expected return at the desired level, which can be a function of time. A dynamic asset allocation strategy is to redo the calculations at each period, using new available information. If the time horizon tends to infinite, then the efficient frontier, in the average compound probability measure, will tend to only one point, given by the Kelly’s portfolio, whatever the risk measure is. To select one among several portfolio optimization models, it is necessary to compare their relative performances. The efficient frontier of each model must be plotted in its respective graph. As the weights of the assets of the portfolios on these curves are known, it is possible to plot all curves in the same graph. For a given expected return, the efficient portfolios of the models can be calculated, and the realized returns and their differences along a backtest can be compared.

Page generated in 0.056 seconds