• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computational study of electrostatic contribution to membrane dynamics

Kiselev, Vladimir January 2011 (has links)
Electrostatics plays a crucial role in the membrane biology. Negatively charged lipids (such as PS, PA and PIP2) are subject to redistribution under the action of electrostatic forces during various signalling events. Membrane recruitment of multiple signalling proteins (such as MARCKS or Src kinase) is often maintained by positively charged polybasic domains (PD). Even though adsorption of these proteins to the cellular membrane has been extensively investigated, very little is known about how electrostatic interactions contribute to their membrane lateral dynamics. This thesis presents an investigation of the contribution of electrostatic interactions to the membrane lateral dynamics by means of novel computational tools. First, I developed a dynamic Monte-Carlo automaton that faithfully simulates lateral diffusion of the adsorbed positively charged PD of a peripheral membrane protein, as well as the dynamics of mono- (PS, PA) and polyvalent (PIP2) anionic lipids within the bilayer. This model allowed to investigate the major characteristics of protein-membrane diffusion on the uniform membrane. In agreement with earlier results, the simulations revealed the following microscopic phenomena: 1) Electrostatic lipid demixing in the vicinity of the PD; 2) PD interacts with PIP2 stronger than with monovalent lipids. On the spatially heterogeneous membrane the automaton predicted a directional drift of the PD, which was validated by a simple mean-field analytical model. The predicted phenomenon could potentially play a major role in membrane domain formation. To test this hypothesis and to investigate the membrane dynamics on larger scales I developed a continuous model, which was based on the results of the automaton simulations. The results of the continuous model and the Monte-Carlo simulations were shown to be in quantitative agreement. The continuous model allows one to simulate the electrostatic membrane dynamics on micrometer scales and can be used to describe various biologically important processes, such as endocytic cup initiation.
2

Studium modelových membrán, proteinů a protein-membránových interakcí pomocí různých fluorescenčních technik / The study of model membrane systems, proteins and protein-membrane interactions using various fluorescence techniques

Štefl, Martin January 2012 (has links)
Membrane rafts (also referred as nanodomains) are membrane structures responsible for many cell processes. Their characterization is challenging because of the transparency, dynamics and small size of those structures. Moreover, high variability of cells makes their study even more complicated. In order to simplify the studies of membrane processes including the formation of those rafts often model membranes like Giant Unilamellar Vesicles (GUVs) and Supported Phospholipid Bilayers (SPBs) are used. In this Thesis new fluorescent tools for studying such membrane processed were developed, tested, or improved. Specifically, the phasor plot an approach applicable to the analysis of the fluorescence lifetime data, was theoretically and experimentally tested and afterwards applied to the characterization of the membrane nanodomains in GUVs. First, we introduced the phasor plots to the excitation state processes like solvent relaxation and Förster resonance energy transfer (FRET) in lipid vesicles. We also employed the phasor plots in protein-ligand interaction, protein folding and denaturation studies. Finally, the phasor plot analysis of FRET data in combination with Fluorescence Correlation Spectroscopy (FCS) was used in characterization of membrane nanodomains in terms of the size, mobility and...
3

Interactions entre les tannins et les lipides : impact possible sur le goût du vin

Furlan, Aurélien 19 December 2013 (has links)
Lors de la dégustation d’un vin, les tannins sont responsables de deux propriétés gustatives, l’amertume et l’astringence, respectivement dues à des associations avec les protéines salivaires et les récepteurs au goût amer. Néanmoins, leurs intensités perçues en bouche vont dépendre de multiples facteurs, notamment la présence de molécules externes aux complexes tannin-protéine tel que les lipides, qu’ils soient situés au niveau des membranes buccales ou issus de l’alimentation. L’objectif de cette thèse a ainsi été d’examiner l’impact des lipides sur ces sensations organoleptiques. Pour ce faire, cette étude, réalisée principalement par RMN, s’est intéressée aux interactions tannin-lipide sur des modèles de membranes buccales et d’émulsions de gouttelettes lipidiques. Nous avons pu alors étudier l’interaction tannin-lipide en termes de localisation, d’affinité et de dynamique. Nos résultats montrent dans un premier temps une localisation du tannin à l’interface de tous les modèles utilisés. En outre, l’insertion de tannins au niveau des vésicules multilamellaires, modèle utilisé pour mimer les membranes buccales, entraîne une fluidification de ce système lipidique. Il a été montré que cet effet fluidifiant dépend de la structure du tannin, de la présence d’éthanol et de la teneur en cholestérol du système lipidique. Enfin, un protocole permettant d’obtenir les constantes d’associations tannin-lipide par RMN a été établi. Ces dernières se sont révélées du même ordre de grandeur que celles relatives aux interactions tannin-protéine salivaire. Ces résultats montrent que les lipides auraient une influence d’une part sur l’astringence via une compétition entre les interactions tannin-lipide et les interactions tannin-protéines salivaires et d’autre part sur l’amertume en perturbant la dynamique de la membrane, ce qui pourrait induire une perturbation des récepteurs gustatifs. / When tasting a wine, tannins are responsible of two gustative properties, bitterness and astringency, respectively due to association between tannins and salivary proteins or bitter receptors. However, perceived intensities depend on several factors, including the presence of external molecules such as lipids, either located in the buccal membranes or from food. The main objective of this thesis was to study the effect of lipids on these two organoleptic properties. For that, this study, carried out mainly by NMR, is interested in tannin-lipid interaction using several models of buccal membranes and lipid droplets. We have studied these interactions in terms of localization, affinity and dynamics. Our results show a localization of tannins at the interface of all studied lipid models. Then, the insertion of tannins in multilamellar vesicles, used to mimic buccal membranes, causes a fluidification effect on these systems. This effect depends on the structure of the tannin, the presence of ethanol and the cholesterol content of the lipid system. Finally, a protocol to determine the tannin-lipid association constants was developed. The latter have proved to be in the same order of magnitude as those for tannin-salivary protein interaction. These results show that lipids could have an influence on the one hand on astringency, due to the competition between tannin-lipid interaction and tannin-salivary protein interaction, and on the other hand on bitterness due to the disturbance of the buccal membrane dynamics, which could induce a disturbance of the gustative receptors.
4

Le Rôle de la myéline dans les maladies dégénératives / The Role of Myelin in Degenerative Diseases

Knoll, Wiebke 17 September 2012 (has links)
La gaine de myéline joue un rôle essentiel dans l'efficacité de la conduction électrique des impulsions nerveuses dans le système nerveux central et le système nerveux périphérique. Afin de mieux comprendre le rôle de la myéline dans les maladies auto-immunes qui affectent le système nerveux, l'influence des protéines MBP-C1, MBP-C8 (une forme mutante) et P2 sur la structure de la membrane a été étudiée par diffraction neutronique, et sur sa dynamique par diffusion neutronique élastique incohérente (EINS) et diffusion neutronique quasi-élastique (QENS). Les expériences ont révélé que des changements de structure se produisent dans les membranes de myéline modèles dans la région de température couvrant les transitions de phase des lipides. Par des mesures de diffraction neutronique, on a observé que les protéines MBP-C1 et P2 affectent profondément la structure des membranes de myéline reconstituées, révélant des changements importants dans la bicouche de la phase liquide. Une variété de comportements dynamiques fonctions de la température sont également observés par EINS dans le modèle des membranes de myéline: une transition entre un régime harmonique vers un régime non harmonique en raison des rotations du groupe de méthyle est suivie par d'autres transitions induites par la transition de phase gel-liquide de la bicouche et de la fusion de l'eau d'hydratation. MBP-C1 s'avère réduire la dynamique de la membrane, augmentant la température à partir de laquelle la première transition se produit et réduisant la dynamique dans la phase de gel. Ces résultats sont en adéquation avec les mesures par QENS qui montrent une réduction de la dynamique de la membrane dans la phase de gel induite par MBP-C1. Au contraire, dans la phase liquide, MBP-C1 s'avère accroître les mouvements de diffusion observés par QENS, ce qui est consistant avec l'observation des changements de la structure bicouche induits par MBP-C1 dans la phase liquide: en raison de l'élargissement de l'espace à l'intérieur de la bicouche, causé par la protéine MBP-C1 qui pénètre dans la bicouche, les lipides pourraient avoir augmenté leur degré de liberté. Aucune différence significative sur les mouvements observés de la membrane entre les effets de MBP-C1 et sa forme modifiée MBP-C8 associée à de multiples scléroses n'a été observée dans cette étude. Par ailleurs, on a démontré que les protéines MBP-C1 et P2 agissent de façon fortement synergique et il se pourrait qu'elles s'associent à l'intérieur de la membrane. Leur capacité à réduire la dynamique de la membrane dans la phase liquide est considérablement accrue quand les deux protéines sont présentes. Un modèle est proposé dans lequel les protéines associées influencent des grandes parties de la membrane en améliorant l'adhésion entre les bicouches par leurs fortes interactions électrostatiques et par un effet de synergie sur leur empilement. / The myelin sheath is essential for efficient electrical conduction of nerve impulses in the central and in the peripheral nervous system. To gain insight into the role of myelin, in autoimmune diseases that affect the nervous system, the influence of the myelin protein MBP-C1, a mutated form MBP-C8, and P2 on the membrane structure was investigated using neutron diffraction and on the membrane dynamics using incoherent elastic (EINS) and quasielastic neutron scattering (QENS). The experiments revealed that structural changes occur in the model myelin membranes across the temperature region covering the lipid phase transitions. The myelin proteins MBP-C1 and P2 are shown to strongly affect the structure of the model myelin membranes, shown by neutron diffraction measurements revealing significant changes in the bilayer spacing in the liquid phase. A range of distinct dynamical behaviours are observed by EINS in the model myelin membranes as a function of temperature: a first transition from a harmonic to an anharmonic temperature regime, assigned to methyl group rotations, is followed by further transitions induced by the gel-liquid phase transition of the bilayer and melting of the hydration water. MBP-C1 is shown to reduce the dynamics of the membrane, increasing the temperature at which the first transition occurs, and reducing the dynamics in the gel phase. These results were in agreement with quasielastic neutron scattering measurements, which showed a reduction of confined diffusive motions of the membrane in the gel phase induced by MBP-C1. In contrast, in the liquid phase, MBP-C1 was found to enhance diffusive motions, revealed with QENS, which is consistent with the observed changes to the bilayer structure that are induced by MBP-C1 in the liquid phase: due to the widening of the interbilayer space caused by MBP-C1, which penetrates into the bilayer, the lipids may have increased their conformational freedom. Any significant difference between the effects of MBP-C1 and its modified form MBP-C8, which is associated with multiple sclerosis, on motions of the membrane, investigated by QENS, were not identified in this study. It was demonstrated that both proteins MBP-C1 and P2 act in a highly synergistic manner and may associate within the membrane. Their ability to reduce the membrane dynamics in the liquid phase is considerably enhanced when both proteins are present. A model is proposed in which the associated proteins influence large fractions of the membranes by promoting adhesion between the bilayers through their strong electrostatic interactions and by their synergistic stacking effect.
5

Réponses des cellules de Nicotiana tabacum à des molécules microbiennes : évènements de signalisation précoce, influence de la dynamique membranaire et flux de sucres / Responses of Nicotiana tabacum cells to microbial molecule treatments : early signaling events, influence of membrane dynamics, and sugar fluxes

Pfister, Carole 19 January 2018 (has links)
Dans son environnement la plante est confrontée à une variété de microorganismes bénéfiques, neutres et pathogènes, qui sont fortement dépendants des ressources carbonées qu’elle libère dans le sol. Le transport de sucres, processus clé de la physiologie de la plante, est essentiel pour les interactions plantes-microorganismes et leur devenir. Au cours de l'évolution, les plantes ont acquis des mécanismes leur permettant de percevoir les signaux microbiens du milieu extérieur, et aboutissant à la transduction d’un signal spécifique puis à des réponses biologiques adaptées (défense versus mutualisme) à la stratégie du microorganisme. Ces réponses assurent la survie et le développement des plantes. Mes travaux de thèse, menés avec un système « d’interaction » simplifié, contribuent à une meilleure compréhension des mécanismes sous-jacents au déterminisme des interactions plantes-microorganismes. Ce système a permis d’étudier, sur des suspensions cellulaires de N. tabacum, les réponses cellulaires précoces déclenchées suite à la perception de molécules microbiennes provenant de microorganismes à stratégie pathogène avirulent ou à stratégie mutualiste. Nous avons mesuré des évènements de signalisation et des flux de sucres induits en réponse à ces molécules microbiennes. Nos résultats ont mis en évidence que les chitotétrasaccharides (CO4), sécrétés par les champignons mycorhiziens à arbuscules dans les stades pré-symbiotiques de l’interaction, mobilisent les mêmes événements de signalisation précoce (H2O2 dépendant de la protéine rbohD, Ca2+ cytosolique, activation de MAPK) que la cryptogéine, un éliciteur des réactions de défense ; mais avec des réponses différentes en terme d’intensité et de cinétique. Les CO4 et la cryptogéine ont par ailleurs montré des impacts distincts sur les flux de sucres et l’expression de transporteurs impliqués. En complément nous avons montré un effet de la modification de la dynamique membranaire associée à la clathrine sur des évènements de signalisation déclenchés par la cryptogéine, ainsi que dans les flux entrants de sucres et l’expression de gènes de transporteurs de sucres. Enfin, l’analyse in silico de l’interactome de transporteurs de sucres chez la plante modèle A. thaliana, nous a permis d’apporter des connaissances supplémentaires quant aux évènements de régulations des transporteurs de sucres et l’identification de protéines régulatrices putatives en interaction avec ces derniers. L’ensemble de ces travaux ouvrent la voie à de nouvelles recherches visant à élucider les mécanismes cellulaires et moléculaires impliqués dans la mise en place des interactions entre plantes et microorganismes. / In their natural environment plants are in close interaction with beneficial, neutral, or pathogenic microbes, which are highly dependent on carbon resources exuded by plant roots. Sugar transport, which is a key process of plant physiology, is essential to support the fate of plant-microbe interactions. During evolution, plants have acquired the ability to perceive microbial molecules, initiating specific signal transduction cascades and leading to adapted response for microbe lifestyles (avirulent, virulent, or benefic). Plant survival will depend on the nature of the induced mechanisms. My PhD work, carried out on a simplified experimental system, contributes to the understanding of mechanisms underlying the determinism of plant-microbe interactions. We used Nicotiana tabacum cells in suspension exposed to microbial molecules derived from mutualistic or avirulent microbes. Using such a simplified system, we analyzed elements of the early signaling cascade and sugar fluxes. We have shown that CO4, which is originating from AMF, initiate early signaling components (rbohD-dependent H2O2, cytosolic Ca2+, MAPK activation) as cryptogein, a defense elicitor, but with distinct profile and amplitude. Those two molecules (CO4 and cryptogein) are responsible of different effects on sugar fluxes and the expression of the underlying sugar transporter genes. In addition, we presented an impact of the alteration of clathrin-mediated process on early signaling events triggered by cryptogein, as well as inward sugar fluxes and expression of sugar transporter genes. Finally, in silico analyses of sugar transporter interactome in Arabidopsis thaliana has provided some possible regulation mechanisms through the identification of new candidate proteins involved in sugar transporter regulation. These information open new perspectives towards a better understanding of the cellular and molecular mechanisms involved in plant-microbe interactions.
6

Effect of crowdedness in the life cycle of lysenin studied by high-speed atomic force microscopy

Lopez de Blas, Ignacio 13 June 2017 (has links)
De nombreuses fonctions de la membrane plasma dépendent de manière vitale de sa structure et de sa dynamique. L’observation d’une diffusion anomale in vivo et in vitro par l’utilisation de la microscopie en fluorescence et par le pistage de particules Isolées ont permis de développer notre conception de la membrane, en la faisant passer d’un fluide homogène à deux couches avec des protéines se diffusant librement, à une mosaïque extrêmement organisée, surpeuplée et agglomérée de lipides et de protéines. Malheureusement, il n’a pas été possible d’apparenter les diffusions anomales à des détails moléculaires en raison du manque de capacité d’observation moléculaire directe et unmarqués Dans cotre cas, nous utilisons la microscopie à force atomique à grande vitesse, et une méthodologie d’analyse innovante pour analyser le pore en formant la protéine Lysine dans un environnement surpeuplé et nous documentons l’existence de différents régimes de diffusion au sein de la même membrane. Nous montrons la formation de phases locales de verre, où les protéines sont attrapées dans des cages formées par proximité cages sur des échelles de temps allant jusqu’à 10 s, ce qui n’avait pas été antérieurement observé de manière expérimentale pour les membranes biologiques. De plus, autour de patchs d’apparence solide et de molécules immobiles nous avons pu détecter une phase du verre plus lente qui mène à l’emprisonnement de la protéine et à la création d’un périmètre de diffusion de la membrane diminué . / Many functions of the plasma membrane depend critically on itsstructure and dynamics. Observation of anomalous diffusion in vivo and in vitro usingfluorescence microscopy and single particle tracking has advanced our concept of themembrane from a homogeneous fluid bilayer with freely diffusing proteins to a highlyorganized crowded and clustered mosaic of lipids and proteins. Unfortunately,anomalous diffusion could not be related to local molecular details given the lack ofdirect and unlabeled molecular observation capabilities. Here, we use high-speedatomic force microscopy and a novel analysis methodology to analyze the poreforming protein lysenin in a highly crowded environment and document coexistenceof several diffusion regimes within one membrane. We show the formation of localglassy phases, where proteins are trapped in neighbor-formed cages for time scales upto 10 s, which had not been previously experimentally reported for biologicalmembranes. Furthermore, around solid-like patches and immobile molecules aslower glass phase is detected leading to protein trapping and creating a perimeter ofdecreased membrane diffusion.

Page generated in 0.0643 seconds