• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effect of forward flushing, with permeate, on gypsum scale formation during reverse osmosis treatment of CaSO4-rich water in the absence of anti-scalant

Otto, Dietmar Norman 12 1900 (has links)
Thesis (MEng) -- Stellenbosch University, 2014. / ENGLISH ABSTRACT: When desalinating brackish water by reverse osmosis (RO) or other techniques, high overall water recoveries are essential to minimize brine production and the associated disposal costs thereof. As the overall water recovery increases, concentrations of sparingly soluble salts (e.g. barium sulphate, calcium sulphate) reach levels above saturation, especially near the membrane surface, drastically increasing the scaling propensity. Antiscalants are typically dosed into the feed water to prevent such scaling during RO desalination. However, the carry-over of antiscalant into the concentrate stream can complicate subsequent salt precipitation processes that may be used to increase overall water recovery. These precipitation techniques are sometimes used to reduce the levels of super-saturation in the RO concentrate prior to a subsequent RO desalination step. The purpose of this study was to assess the feasibility of reducing calcium sulphate scaling on RO membranes, by using periodic permeate flushing when feeding a lab-scale RO unit with a supersaturated calcium sulphate solution in the absence of anti-scalant. The overall water recovery was increased by recycling the concentrate, after an intermediate de-supersaturation step. This simulated a multiple-stage RO system, typical of processes used in high-recovery acid mine drainage (AMD) treatment plants. De-supersaturation of the concentrate intermediate was achieved with direct seeded gypsum precipitation, in the absence of any antiscalant. On the membrane surface inside the membrane unit, calcium sulphate concentrations greatly exceeded saturation levels – a combined consequence of the normal concentration process and the well-known surface-based concentration polarisation phenomenon. Therefore, periodic forward-flushing of the supersaturated solution from the membrane unit was performed with permeate. In theory, the periodic flushing removes the highly concentrated layer at the membrane surface during every flush, before scaling can occur. Various flushing regimes were evaluated to assess the effectiveness of the process. A lab-scale desalination unit with a 0.106 m2 flat sheet polyamide RO membrane was designed and constructed. The unit could operate at a feed rate of 12-14 L/h and at permeate fluxes of 12-24 LMH. Super-saturated feed solutions were prepared by mixing sodium sulphate and calcium chloride dihydrate salts with demineralised water, with an initial salinity of ± 5300 mg/L TDS, corresponding to a gypsum saturation index (SIg) of 1.2 for most experiments. The total production time, net permeate production and flux decline were used to compare the flushing efficiency in different experimental runs. Initial tests showed that scaling could be prevented (when operating the unit in full recycle mode, i.e. where both concentrate and permeate were recycled to feed), at flushing frequencies between 12 and 2.4 h-1, when the membrane feed and concentrate were slightly under-saturated (SIg = 0.9) and slightly super-saturated (SIg = 1.1) respectively. However, when switching the same system to non-flushing mode after 24 hours of operation, membrane scaling occurred within 2-3 hours, as indicated by a strong decline in flux. However, when operating the system in concentrate recycle mode (i.e. permeate is withdrawn) with super-saturated feed solutions (e.g. SIg = 1.2), and thus a notably more super-saturated solution in the membrane concentrate, scaling could not be prevented (albeit delayed for some time) with intermittent permeate flushing. A fractional 25-1 factorial design was used to determine which factors had the most significant effect on total production time and permeate production rate, testing five factors: 1) flushing frequency, 2) flushing volume, 3) permeate soak time, 4) permeate flux and 5) instantaneous recovery. The ANOVA analysis showed that total production times were, not surprisingly, primarily affected by the permeate flux, where operation at 24 LMH resulted in a lower net permeate production between 3.0 - 4.2 L, compared to 7.6 - 9.7 L at 12 LMH. Higher permeate fluxes clearly resulted in higher levels of concentration polarisation at the membrane surface, thus increasing the propensity for membrane scaling. Flushing frequency and instantaneous recovery also affected the net permeate production, where 6 h-1 and 10 % were the optimal values respectively within the range of test conditions. The lowest permeate production rate resulted in the highest net permeate volume production (i.e. also longest total production time), confirmed by a least squares regression. In summary: This study showed that periodic permeate flushing could delay the membrane scaling process. However, it failed to prevent membrane scaling completely when operating the system with supersaturated calcium sulphate solutions in the absence of antiscalants. The flushing technique effectively delayed the onset of precipitation, but scaling eventually occurred if the lab-scale RO system was operated in concentrate recycle mode with oversaturated feed solutions (SIg = 1.2). Additional experiments at different cross-flow velocities during permeate flushing, while using an optimised RO test cell flow channel design, are recommended for future studies. / AFRIKAANSE OPSOMMING: Gedurende die ontsouting van brakwater deur tegnieke soos tru-osmose (TO), is ʼn maksimum herwinning van water noodsaaklik om die produksie, en die gepaardgaande kostes van verwydering, van die sout/brak neweproduk te minimeer. Soos die herwinning van water verhoog, so ook verhoog die konsentrasie van moeilik-oplosbare soute (soos bariumsulfaat, kalsiumsulfaat) in die sout konsentraat stroom, totdat die soute uiteindelik superversadiging bereik. Hierdie superversadiging gebeur veral naby die membraanoppervlak, waar dit lei tot ʼn verhoogde kans van presipitasie en skaalvorming. Om dit te voorkom word die voerwater na ʼn TO stelsel tipies gedoseer met antiskaalmiddels. Hierdie antiskaalmiddels verlaat die stelsel saam met die konsentraat, waar hulle gevolglike die presipitasie van soute bemoeilik. Presipitasie van soute uit die konsentraat kan tipies gebruik word om die vlak van superversadiging in die konsentraat te verlaag, waarna verdere TO behandeling gebruik word om selfs ʼn hoër algehele waterherwinning te bewerkstellig. Die doel van hierdie studie was om die vatbaarheid van die vermindering van kalsiumsulfaat (gips) skaalvorming in die afwesigheid van antiskaalmiddels op TO membrane te toets. Dit is bewerkstellig deur ʼn laboratoriumskaal TO eenheid te voer met ʼn superversadigde kalsiumsulfaat oplossing en die membraan periodies met skoon produkwater (permeaat) te was. Die algehele waterherwinning is verhoog deur met ʼn tussenstap die versadigingsvlak van gips in die konsentraat te verlaag, waarna dit hersirkuleer is na die voertenk. Sodoende is ʼn multi-stadium TO stelsel nageboots, soos dit tipies in hoë herwinningsaanlegte, soos met die herwinning van suur mynwater (E: acid mine drainage, AMD), gebruik word. ʼn Verlaging in superversadiging van die konsentraat in die tussenstap is behaal deur die konsentraat direk aan gipskristalle bloot te stel om presipitasie te bewerkstellig in die afwesigheid van enige antiskaalmiddels. Gedurende eksperimente het die soutkonsentrasie op die membraanoppervlak in die TO eenheid superversadigingsvlakke vêr oorskry, as gevolg van die natuurlike konsentrasie proses en die bekende konsentrasie polarisasie oppervlaksverskynsel. Om hierdie superversadiging teen te werk is periodiese saamstroom spoeling van die membraan met skoon produkwater uitgevoer. In teorie het die periodiese spoeling die hoogs gekonsentreerde oplossing van die membraan oppervlak verwyder voor skaalvorming kan plaasvind. Verskillende spoelpatrone is ondersoek om die doeltreffendheid van die spoeling te bepaal. Om die eksperimente uit te voer is ʼn laboratoriumskaal ontsoutingsaanleg met ʼn maklik verwyderbare 0.106 m2 plat-vel poli-amied TO membraan ontwerp en gebou. Die aanleg kan vloeistof voertempo’s tussen 12-24 L/h hanteer en skoon produkwater teen 12-24 LHM lewer. Die superversadigde voer oplossings, soos gebruik in die meerderheid van die eksperimentes is voorberei deur natriumsulfaat en kalsiumchloried-dihidraat soute te meng in gedemineraliseerde water, tot ʼn soutgehalte van ± 5300 mg/L TDS bereik is. Hierdie soutgehalte stem ooreen met ʼn gips versadigingsindeks (E: gypsum saturation index, SIg) van 1.2. Die skoon produkwater totale produksietyd en netto produksie, asook die membraan vloed afname, is gebruik as veranderlikes om die spoel doeltreffendheid tussen eksperimentele lopies te vergelyk. Aanvanklike toetse het getoon dat skalering voorkom is by effens onderversadigde (SIg = 0.9) en effens superversadigde (SIg = 1.1) voer oplossings met die onderskeie spoel frekwensies van 12 en 2.4 h-1, (terwyl die aanleg in algehele hersirkulasie bedryf is, m.a.w. wanneer beide die konsentraat en produkwater gedurig na die voertenk hersirkuleer word). ʼn Effens-superversadigde eksperiment is ook sonder spoeling uitgevoer vir 24 uur. In hierdie geval het skaalvorming binne twee tot drie uur gebeur, soos bevestig deur ʼn skerp afname in die membraan vloed. Skaalvorming kon nie verhoed word terwyl die aanleg bedryf word met superversadigde (SIg = 1.2) voeroplossings en slegs konsentraat hersirkulasie nie (m.a.w. skoon produkwater word opgevang), alhoewel skaalvorming vertraag kon word. Hierdie operasie het tot beduidend meer gekonsentreerde oplossings in die membraan gelei. Om te bepaal watter faktore die grootste invloed op totale produksietyd en netto produksie van skoon produkwater het, is ʼn fraksionele faktoriaalontwerp van 25-1 uitgelê wat vyf faktore toets, naamlik: 1) spoel frekwensie, 2) spoel volume, 3) skoon produkwater weektyd, 4) membraanvloed en 5) oombliklike herwinning. ʼn AVOVA analise het getoon dat totale produksietyd hoofsaaklik deur membraanvloed beïnvloed is, soos verwag kan word. Dit word gestaaf deurdat die aanleg, bedryf teen 24 LMH, slegs 3 - 4.2 L netto produkwater gelewer het, teenoor 7.6 - 9.7 L by 12 LMH. Hoër membraan vloedtempo’s het tot hoër vlakke van konsentrasie polarisasie op die membraanoppervlak gelei, wat ʼn groter neiging tot skaalvorming tot gevolg gehad het. Spoelfrekwensie en oombliklike herwinning het ʼn invloed op die netto produksie van skoon produkwater gehad, met 6 h-1 en 10 % as die onderskeie optimale waardes. ʼn Kleinstekwadraat regressie het aangedui dat die laagste produksietempo van skoon produkwater die hoogste netto produksie van skoon produkwater gelewer het, (asook die langste produksietyd). In opsomming: Hierdie studie het getoon dat gereelde spoeling met skoon produkwater die membraan skaalproses kan vertraag. Gedurende bedryf met superversadigde kalsiumsulfaat oplossings sonder enige antiskaalmiddels is daar gevind dat skaalvorming nie geheel en al vermy kon word nie. Die spoeltegniek, soos gebruik in hierdie studie, het die aanvang van skaalvorming in die laboratorium skaal TO eenheid vertraag, maar bedryf met konsentraat hersirkulasie en superversadigde oplossings (SIg = 1.2) het steeds skaal gevorm. Bykomende eksperimente teen verskeie kruisvloei snelhede gedurende die spoel stap word aanbeveel vir toekomstige studies.
2

The Impact of Membrane Fouling on the Removal of Trace Organic Contaminants from Wastewater by Nanofiltration

Vogel, Dirk 20 May 2019 (has links)
Nanofiltration (NF) is an attractive option for the treatment of wastewater e.g. municipal wastewater and landfill leachate. However, membrane fouling can be a major obstacle in the implementation of this technology. Fouling of nanofiltration membranes by hu-mic acids (HA) was investigated using bisphenol A (BPA) as an indicator chemical to dif-ferentiate between various mechanisms that may lead to a change in solute rejection. Three commercially available NF membranes were investigated and an accelerated foul-ing condition was achieved with a foulant mixture containing humic acids in an electro-lyte matrix. The effects of membrane fouling on the rejection of BPA were interpreted with respect to the membrane pore sizes and the fouling characteristics. Results report-ed here indicate that calcium concentration in the feed solution could be a major factor governing the humic acid fouling process. Moreover, a critical concentration of calcium in the feed solution was observed, at which membrane fouling was most severe. Mem-brane fouling characteristics were observed by their influence on BPA rejection. Such influence could result in either an increase or decrease in rejection of BPA by the three different membranes depending on the rejection mechanisms involved. It is hypothe-sised that these mechanisms could occur simultaneously and that the effects of each might not be easily distinguished. However, it was observed that their relative contribu-tion was largely dependent upon membrane pore size. Pore blocking, which resulted in a considerable improvement in rejection, was prominent for the more open pore size TFC-SR2 membrane. In contrast, the cake-enhanced concentration polarisation (CECP) effect was more severe for the tighter NF270 and NF90 membranes. For hydrophobic solutes such as BPA, the formation of the fouling layer could also interfere with the so-lute-membrane interaction, and therefore, exert considerable influence on the separa-tion process. The combined impact of humic acid fouling and CaCO3 scaling on the rejection of trace organic contaminants by a commercially available nanofiltration membrane was inves-tigated in this study. Due to the presence of humic acid in the feed solution, CaCO3 scal-ing behaviour differed substantially from that of a pure CaCO3 solution. A prolonged induction period was consistently observed prior to the onset of membrane scaling. In addition, membrane scaling following humic acid fouling did not result in a complete loss of permeate flux. This is consistent with the absence of any large CaCO3 crystals. In fact, the CaCO3 crystals on the membrane surface were quite small and similar in size, which would result in a relatively porous cake layer. At the onset of CaCO3 scaling the rejection of all three trace organic contaminants started to decrease dramatically. The observed decrease in rejection of the trace organic contaminants was much more se-vere than that reported previously with a single layer of either organic or colloidal foul-ing. Such severe decrease in rejection can be attributed to the extended cake-enhanced concentration polarisation effect occurring as a result of the combination of membrane fouling and scaling. The porous CaCO3 scaling layer could lead to a substantial cake-enhanced concentration polarisation effect. In addition, the top CaCO3 scaling layer could reduce the wall shear rate within the underlying humic acid fouling layer, causing an additional concentration polarisation (CP) effect.:1 INTRODUCTION 1 1.1 Fundamentals of NF/RO 1 1.1.1 Solute transport through NF/RO membranes 2 1.1.2 Separation mechanisms 3 1.1.2.1 Steric size exclusion 3 1.1.2.2 Donnan effect 3 1.1.2.3 Electrostatic repulsion 4 1.1.2.4 Adsorption 4 1.1.3 Environmental applications of NF/RO 5 1.1.4 Drinking water treatment from groundwater and surface water sources 5 1.1.5 Water/Wastewater reclamation 7 1.2 Classification and materials of NF/RO membranes 7 1.2.1 Membrane classes 7 1.2.2 Membrane materials 8 1.2.3 Organic membrane materials 9 1.2.3.1 Polyamide membranes 9 1.2.3.2 Cellulose acetate membranes 9 1.2.4 Inorganic membrane materials 10 1.3 Removal of trace organic contaminants 11 1.3.1 Impact of membrane characteristics 14 1.3.1.1 Molecular weight cut-off/pore size 14 1.3.1.2 Surface charge 14 1.3.1.3 Hydrophobicity/hydrophilicity 15 1.3.1.4 Surface morphology 15 1.3.2 Impact of feed characteristics 17 1.3.2.1 pH value 17 1.3.2.2 Ionic strength 18 1.3.2.3 Organic matter 19 1.3.2.4 Presence of divalent ions 20 1.3.2.5 Presence of foulants 20 1.3.2.6 Temperature 20 1.3.3 Impact of solute characteristics 22 1.3.3.1 Molecular weight 22 1.3.3.2 Molecular size (length and width)/molecular volume 22 1.3.3.3 Minimum projection area/Equivalent width 23 1.3.3.4 Charge 23 1.3.3.5 Hydrophobicity/hydrophilicity 24 1.3.4 Impact of operational characteristics 25 1.3.4.1 Transmembrane pressure/permeate or transmembrane flux 25 1.3.4.2 Cross-flow velocity/recovery/concentration polarisation 25 1.3.5 Impact of fouling on rejection 26 1.3.5.1 Organic fouling 28 1.3.5.2 Colloidal fouling 30 1.3.5.3 Inorganic fouling (scaling) 31 1.3.5.4 Biological fouling 32 1.3.6 Impact of membrane cleaning on rejection 32 1.3.6.1 Changes of membrane morphology due to cleaning 32 1.3.6.2 Impact on rejection of TrOCs due to cleaning 33 1.3.7 Validation at pilot and full scale systems 35 2 MEMBRANE FOULING IN THE NANOFILTRATION OF LANDFILL LEACHATE AND ITS IMPACT ON TRACE CONTAMINANT REMOVAL 37 2.1 Introduction 37 2.2 Materials and Methods 40 2.2.1 Analytical reagents and chemicals 40 2.2.2 Nanofiltration membrane 40 2.2.3 Membrane filtration set-up and protocol 41 2.2.4 Analytical technique 42 2.3 Results and discussion 42 2.3.1 Landfill leachate characterisation 42 2.3.2 Physico-chemical properties of bisphenol A 43 2.3.3 Influence of the calcium concentration on the flux 44 2.3.4 Influence of fouling on the rejection of organic contaminants 46 2.4 Conclusions 48 3 CHARACTERISING HUMIC ACID FOULING OF NANOFILTRATION MEMBRANES USING BISPHENOL A AS A MOLECULAR INDICATOR 50 3.1 Introduction 50 3.2 Materials and methods 52 3.2.1 Model NF membranes and membrane characterisation 52 3.2.2 Model trace organic contaminant 52 3.2.3 Organic foulant 53 3.2.4 Membrane filtration set-up 54 3.2.5 Filtration protocol 55 3.2.6 Analytical technique 56 3.3 Results and discussions 56 3.3.1 Membrane characteristics 56 3.3.2 Membrane fouling behaviour 58 3.3.3 Change of membrane hydrophobicity 61 3.3.4 Effects of organic fouling on the nanofiltration of BPA 63 3.3.5 Effects of organic fouling on rejection: the mechanisms 65 3.4 Conclusions 67 4 EFFECTS OF FOULING AND SCALING ON THE REJECTION OF TRACE ORGANIC CONTAMINANTS BY A NANOFILTRATION MEMBRANE: THE ROLE OF CAKE-ENHANCED CONCENTRATION POLARISATION 69 4.1 Introduction 69 4.2 Materials and methods 71 4.2.1 Nanofiltration membrane 71 4.2.2 Chemicals and reagents 71 4.2.3 Crossflow membrane filtration system 72 4.2.4 Experimental protocol 73 4.2.5 SEM-EDS analysis 74 4.2.6 Analytical methods 75 4.3 Results and discussion 75 4.3.1 Membrane characteristics 75 4.3.2 Membrane fouling and scaling development 76 4.3.3 Effects of fouling/scaling on the membrane rejection behaviour 79 4.3.4 Cake-enhanced concentration polarisation 85 4.4 Conclusions 87 5 SUMMARY AND CONCLUSIONS 88 6 REFERENCES 94 7 ACKNOWLEDGEMENTS 112

Page generated in 0.0606 seconds