• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 32
  • 32
  • 19
  • 12
  • 10
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

FUNCTIONALIZATION OF SILVER NANOPARTICLES ON MEMBRANES AND ITS INFLUENCE ON BIOFOULING

Sprick, Conor G. 01 January 2017 (has links)
Ultrafiltration (UF) processes are often used as pretreatment before more retentive/costly processes, such as nanofiltration and reverse osmosis. This study shows the results of low-biofouling nanocomposite membranes, loaded with casein-coated silver nanoparticles (casein-Ag-NPs). Membranes were cast and imbedded with Ag-NPs using two approaches, physical blending of Ag-NPs in the dope solution (PAg-NP/CA membranes) and chemical attachment of Ag-NPs to cast membranes (CAg-NP/CA membranes), to determine their biofouling control properties. The functionalization of Ag-NPs onto the CA membranes was achieved via attachment with functionalized thiol groups with the use of glycidyl methacrylate (GMA) and cysteamine chemistries. The immobilization chemistry successfully prevented leaching of silver nanoparticles during cross-flow studies. Pseudomonas fluorescens Migula in brackish water was used for short-term dead-end filtration, where CA and CAg-NP/CA membranes displayed lower flux declines as compared to PAg-NP/CA membranes. In subsequent long-term biofouling studies, also with Pseudomonas fluorescens Migula in brackish water with addition of sodium acetate, chemically-attached Ag-NPs led to a significant reduction in the accumulation of bacterial cells, likely due to the more dispersed nanoparticles across the surface. Therefore, a method was developed to chemically immobilize Ag-NPs to membranes without losing Ag-NP’s antimicrobial properties.
22

PORE-CONFINED CARRIERS AND BIOMOLECULES IN MESOPOROUS SILICA FOR BIOMIMETIC SEPARATION AND TARGETING

Zhou, Shanshan 01 January 2017 (has links)
Selectively permeable biological membranes composed of lipophilic barriers inspire the design of biomimetic carrier-mediated membranes for aqueous solute separation. This work imparts selective permeability to lipid-filled pores of silica thin film composite membranes using carrier molecules that reside in the lipophilic self-assemblies. The lipids confined inside the pores of silica are proven to be a more effective barrier than bilayers formed on the porous surface through vesicle fusion, which is critical for quantifying the function of an immobilized carrier. The ability of a lipophilic carrier embedded in the lipid bilayer to reversibly bind the target solute and transport it through the membrane is demonstrated. Through the functionalization of the silica surface with enzymes, enzymatic catalysis and biomimetic separations can be combined on this nanostructured composite platform. The successful development of biomimetic nanocomposite membrane can provide for efficient dilute aqueous solute upgrading or separations using engineered carrier/catalyst/support systems. While the carrier-mediated biomimetic membranes hold great potential, fully understanding of the transport processes in composite synthetic membranes is essential for improve the membrane performance. Electrochemical impedance spectroscopy (EIS) technique is demonstrated to be a useful tool for characterizing the thin film pore accessibility. Furthermore, the effect of lipid bilayer preparation methods on the silica thin film (in the form of pore enveloping, pore filling) on ion transport is explored, as a lipid bilayer with high electrically insulation is essential for detecting activity of proteins or biomimetic carriers in the bilayer. This study provides insights for making better barriers on mesoporous support for carrier-mediated membrane separation process. Porous silica nanoparticles (pSNPs) with pore sizes appropriate for biomolecule loading are potential for encapsulating dsRNA within the pores to achieve effective delivery of dsRNA to insects for RNA interference (RNAi). The mobility of dsRNA in the nanopores of the pSNPs is expected to have a functional effect on delivery of dsRNA to insects. The importance of pores to a mobile dsRNA network is demonstrated by the lack of measurable mobility for both lengths of RNA on nonporous materials. In addition, when the dsRNA could not penetrate the pores, dsRNA mobility is also not measurable at the surface of the particle. Thus, the pores seem to serve as a “sink” in providing a mobile network of dsRNA on the surface of the particle. This work successfully demonstrates the loading of RNA on functionalized pSNPs and identified factors that affects RNA loading and releasing, which provides basis for the delivery of RNA-loaded silica particles in vivo.
23

Capillary Forces in Partially Saturated Thin Fibrous Media

Moghadam, Ali 01 January 2019 (has links)
Capillarity is often exploited in self-cleaning, drag reducing and fluid absorption/storage (sanitary products) purposes just to name a few. Formulating the underlying physics of capillarity helps future design and development of optimized structures. This work reports on developing computational models to quantify the capillary pressure and capillary forces on the fibrous surfaces. To this end, the current study utilizes a novel mass-spring-damper approach to incorporate the mechanical properties of the fibers in generating virtual fibrous structures that can best represent fibrous membranes. Such virtual fibrous structures are then subjected to a pressure estimation model, developed for the first time in this work, to estimate the liquid entry pressure (LEP) for a hydrophobic fibrous membrane. As for accurate prediction (and not just estimation) of the capillary pressure, this work also presents an energy minimization method, implemented in the Surface Evolver code, for tracking the air–water interface intrusion in a hydrophobic fibrous membrane comprised of orthogonally oriented fibers. This novel interface tracking algorithm is used to investigate the effects of the membrane’s microstructure and wetting properties on its resistance to water intrusion (i.e., LEP). The simulation method developed in this work is computationally affordable and it is accurate in its predictions of the air–water interface shape and position inside the membrane as a function of pressure. Application of the simulation method in studying effects of fiber diameter or contact angle heterogeneity on water intrusion pressure is reported for demonstration purposes. Capillary forces between fibrous surfaces are also studied experimentally and numerically via the liquid bridge between two parallel plates coated with electrospun fibers. In the experiment, a droplet was placed on one of the polystyrene- or polyurethane-coated plates and then compressed, stretched, or sheared using the other plate and the force was measured using a sensitive scale. In the simulation, the liquid bridge was mathematically defined for the Surface Evolver finite element code to predict its 3-D shape and resistance to normal and shearing forces, respectively, in presence of the contact angle hysteresis effect. Despite the inherent non-uniformity of the fibrous surfaces used in the experiments and the simplifying assumptions considered for the simulations, reasonable agreement was observed between the experiments and simulations. Results reveal that both normal and shear force on the plates increase by increasing the liquid volume, or decreasing the spacing between the plates.
24

DESIGNED SYNTHESIS OF NANOPOROUS ORGANIC POLYMERS FOR SELECTIVE GAS UPTAKE AND CATALYTIC APPLICATIONS

Arab, Pezhman 01 January 2015 (has links)
Design and synthesis of porous organic polymers have attracted considerable attentions during the past decade due to their wide range of applications in gas storage, gas separation, energy conversion, and catalysis. Porous organic polymers can be pre-synthetically and post-synthetically functionalized with a wide variety of functionalities for desirable applications. Along these pursuits, we introduced new synthetic strategies for preparation of porous organic polymers for selective CO2 capture. Porous azo-linked polymers (ALPs) were synthesized by an oxidative reaction of amine-based monomers using copper(I) as a catalyst which leads to azo-linkage formation. ALPs exhibit high surface areas of up to 1200 m2 g-1 and have high chemical and thermal stabilities. The nitrogen atoms of the azo group can act as Lewis bases and the carbon atom of CO2 can act as a Lewis acid. Therefore, ALPs show high CO2 uptake capacities due to this Lewis acid-based interaction. The potential applications of ALPs for selective CO2 capture from flue gas, natural gas, and landfill gas under pressure-swing and vacuum swing separation settings were studied. Due to their high CO2 uptake capacity, selectivity, regenerability, and working capacity, ALPs are among the best porous organic frameworks for selective CO2 capture. In our second project, a new bis(imino)pyridine-linked porous polymer (BIPLP-1) was synthesized and post-synthetically functionalized with Cu(BF4)2 for highly selective CO2 capture. BIPLP-1 was synthesized via a condensation reaction between 2,6-pyridinedicarboxaldehyde and 1,3,5-tris(4-aminophenyl)benzene, wherein the bis(imino)pyridine linkages are formed in-situ during polymerization. The functionalization of the polymer with Cu(BF4)2 was achieved by treatment of the polymer with a solution of Cu(BF4)2 via complexation of copper cations with bis(imino)pyridine moieties of the polymer. BF4- ions can act Lewis base and CO2 can act as a Lewis acid; and therefore, the functionalized polymer shows high binding affinity for CO2 due to this Lewis acid-based interaction. The functionalization of the pores with Cu(BF4)2 resulted in a significant enhancement in CO2 binding energy, CO2 uptake capacity, and CO2 selectivity values. Due to high reactivity of bis(imino)pyridines toward transitions metals, BIPLP-1 can be post-synthetically functionalized with a wide variety of inorganic species for CO2 separation and catalytic applications.
25

Modeling chemical degradation and proton transport in perfluorosulfonic acid ionomers

Kumar, Milan 01 December 2011 (has links)
The ionomer-membrane interface in a membrane electrode assembly connects the catalyst and membrane and allows hydrated protons to move between the catalyst and membrane. The continuous operation of the polymer membrane electrolyte fuel cell at high temperature and/or in frequent freeze/thaw cycles leads to membrane degradation and delamination of the interface, which lower the proton conductivity. In this dissertation, we modeled the chemical degradation and proton conductivity of perfluorosulfonic acid (PFSA) ionomers by ab initio calculations and macroscopic modeling. All ab initio calculations were performed using Gaussian 03 suites of program by employing B3LYP/6-311++G** method/basis set. The macroscopic modeling involves nonequilibrium thermodynamics. The results show that PFSA membranes can degrade both via side-chain and backbone in the presence of hydroxyl radical. The energetics of homolytic bond cleavage show that the C–S bond in the side-chain is the weakest link and breaks exothermally in the presence of hydroxyl radical. The C–S bond in the membrane fragment radical can break at low activation energy. The side-chain degradation also leads to the split of the backbone into two parts. The backbone degradation starts with the reaction of –COOH impurities in the backbone with the hydroxyl radical, which has the lowest activation energy, and follows an “unzipping mechanism”. The reactions in this mechanism are exothermic. The channels in the interface were modeled as cylindrical pores and the anionic charges were fixed on the pore wall. The analytical expression of proton conductivity was derived from the evolution equations for mass and momentum of hydronium ions by using an order of magnitude analysis. The results show that the conductivity increases with increasing water content and pore radius. The conductivity usually increases on decreasing the separation distance between sulfonates on the length and decreases with decreasing sulfonates separation distance on the circumference. The conductivity of the two pores, one of the interface and the other of the membrane, is closer to the conductivity of the pore with the lowest conductivity and its magnitude depends on the relative radius and length of the pores.
26

SYNTHESIS, CHARACTERIZATION AND APPLICATIONS OF REDUCED GRAPHENE OXIDE AND COMPOSITE MEMBRANES FOR SELECTIVE SEPARATIONS AND REMOVAL OF ORGANIC CONTAMINANTS

Aher, Ashish 01 January 2019 (has links)
Among the next generation materials being investigated for membrane development, partially reduced Graphene Oxide (rGO) has received increasing attention from the membrane community. rGO-based nanofiltration membranes have shown promising results in applications such as partial desalination, organic contaminant removal, gas-phase separations, and separations from solvent media. rGO offers a unique platform compared to common polymeric membranes since it can be used for separation applications in both aqueous and organic solvent media. An rGO-based platform could also be utilized to synthesize reactive membranes, giving rGO membranes the additional capability of reactively removing organic contaminants. This research focuses on the synthesis of rGO and nanocomposite membranes for applications including the separation of high-value phenolic compounds from a solvent-water mixture, removal of organic contaminants, and treatment of refinery wastewater. First, the behavior of a rGO membrane in water and isopropanol was investigated along with its ability to separate high-value, lignin-derived oligomeric compounds from a solvent-water mixture. This study revealed the formation of stable sorbates of water in the GO channels that resulted in declined membrane permeance and improved size-exclusion cutoff. Through controlled reduction of GO by heat treatment, it was demonstrated that physicochemical properties of the GO membrane could be modulated and separation performance tuned based on the extent of reduction. A varying degree of interlayer spacing was attained between the GO laminates by controlling the O/C ratio of GO. This allowed the rGO membrane to achieve tunable molecular separation of lignin-derived model oligomeric compounds from a solvent-water mixture. Second, the mechanism of ionic transport through the rGO membrane was studied as well as its application in partial desalination and removal of persistent organic contaminants from water. Through comprehensive experimental investigations and mathematical analysis, along with the aid of the extended Nernst Planck equation, the impacts of steric hindrance and charge interactions on the underlying ion transport mechanism were quantified. Charge interactions were observed to be the dominant exclusion mechanism for the rGO membranes. The application of rGO membranes for treatment of high TDS produced water was investigated with the goal of partial hardness and dissolved oil removal. In addition, this study demonstrated the removal of emerging organic contaminants, specifically perfluorooctanoic acid, by rGO membranes and elucidated a charge interaction-dominated exclusion mechanism for this contaminant, as well. Finally, rGO-based and microporous polyvinylidene fluoride (PVDF)-based catalytic membrane platforms were synthesized for removal of organic contaminants via an oxidative pathway. Herein, an advanced oxidation process was integrated with membrane technology by the in-situ synthesis of Fe-based nanoparticles. The unique capability to oxidatively remove contaminants in a continuous mode of operation was explored in addition to the separation performance of the membrane. The rGO-based platform achieved high oxidative removal of trichloroethylene via a sulfate-free, radical-mediated pathway, while simultaneously removing humic acids from water and potentially eliminating undesired side reactions. A PVDF-based microporous catalytic membrane platform was shown to effectively remove organic impurities, such as Naphthenic acids, from high TDS produced water by the same pathway. The enhancement of reaction extent for elevated temperatures and longer residence times was also quantified in this study. These studies benefit the membrane community in the following ways: 1) The work identifies the critical role of the physicochemical properties of GO, such as the O/C ratio and water sorption, for determining the permeability-selectivity of rGO membranes for solvent nanofiltration. 2) Investigations of ion transport through rGO membranes led to an understanding of a charge-dominated separation mechanism for ion retention. The Nernst-Planck equation-based approach employed in this study would enable further assessment and comparison of rGO membranes under a wide set of parameters. 3) Catalytic membrane platforms (rGO and microporous PVDF-based) were synthesized for conducting advanced oxidation reactions in the porous membrane domain, demonstrating potential applications in environmental remediation of organic contaminants.
27

PRESSURE-DRIVEN STABILIZATION OF CAPACITIVE DEIONIZATION

Caudill, Landon S. 01 January 2018 (has links)
The effects of system pressure on the performance stability of flow-through capacitive deionization (CDI) cells was investigated. Initial data showed that the highly porous carbon electrodes possessed air/oxygen in the micropores, and the increased system pressure boosts the gases solubility in saline solution and carries them out of the cell in the effluent. Upon applying a potential difference to the electrodes, capacitive-based ion adsorption occurs in competition with faradaic reactions that consume oxygen. Through the addition of backpressure, the rate of degradation decreases, allowing the cell to maintain its salt adsorption capacity (SAC) longer. The removal of oxygen from the pore space of the electrodes makes it no longer immediately accessible to faradaic reactions, thus hindering the rate of reactions and giving the competing ion adsorption an advantage that is progressively seen throughout the life of the cell. A quick calculation shows that the energy penalty to power the pump is fairly insignificant, especially in comparison to the cost of replacing the electrodes in the cell. Thus, operating at elevated pressures is shown to be cost effective for continuous operation through the reduced electrode replenishment costs.
28

Nanoscale modeling of membrane systems under mechanical deformation in traumatic brain injury using molecular dynamics

Vo, Anh Thi Ngoc 08 August 2023 (has links) (PDF)
Neuronal membrane disruption and mechanoporation are nanoscale damage mechanisms that critically affect brain cell viability during traumatic brain injury (TBI). These nanoscale cellular impairments are elusive in experiments and necessitate in silico approaches such as molecular dynamics (MD) simulations. Implementing MD, this research aims to investigate the effects of different key factors related to membrane deformation and damage, including force field resolutions, lipid compositions, and loading conditions. To examine the impact of force field resolution, MD deformation simulations were conducted on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) lipid bilayer membranes, using all-atom (AA), united-atom (UA), and coarse-grained Martini (CG-M) force fields. The mechanical responses of the three models progressively changed based on the coarse-graining level. The coarser systems exhibited lower yield stresses and failure strains, and higher mechanoporation damage. To study the influence of lipid components, tensile deformation was applied on seven lipid bilayers, each of which contained a different lipid type commonly found in human brain membrane. Larger headgroup structure, greater degree of unsaturation, and tail-length asymmetry decreased lipid packing, increased the area per lipid (APL), and decreased the failure strain of membrane. Lastly, the deformation behavior of a complex multicomponent MD bilayer (realistically representing human neuronal plasma membrane) under different strain rates and strain states was inspected. The yield stress increased with increasing strain rates and more equibiaxial strain states. Meanwhile, lower strain rates resulted in fewer but larger pores, as well as lower strain and APL at failure. Besides, more equibiaxial strain states exhibited more and larger pores, and lower failure strain. Similar failure APL was obtained regardless of strain states, suggesting that the membrane failed when reaching a critical APL value. In addition, the inclusion of cholesterol was shown to decrease the critical APL. The strain-state dependence results were then used to update the Membrane Failure Limit Diagram (MFLD) that indicates the planar strains for potential membrane failure. Overall, the study provides a non-invasive approach that aids in the current understanding of nanoscale neuronal damage dynamics and essential aspects affecting membrane mechanical responses, and furthermore lays the groundwork for future studies on brain injury biomechanics under various TBI scenarios.
29

A Low Power Electrical Method for Cell Accumulation and Lysis Using Microfluidics

Islam, Md. Shehadul 10 1900 (has links)
<p>Microbiological contamination from bacteria such as <em>Escherichia coli</em> and Salmonella is one of the main reasons for waterborne illness. Real time and accurate monitoring of water is needed in order to alleviate this human health concern. Performing multiple and parallel analysis of biomarkers such as DNA and mRNA that targets different regions of pathogen functionality provides a complete picture of its presence and viability in the shortest possible time. These biomarkers are present inside the cell and need to be extracted for analysis and detection. Hence, lysis of these pathogenic bacteria is an important part in the sample preparation for rapid detection. In addition, collecting a small amount of bacteria present in a large volume of sample and concentrating them before lysing is important as it facilitates the downstream assay. Various techniques, categorized as mechanical, chemical, thermal and electrical, have been used for lysing cells. In the electrical method, cells are lysed by exposure to an external electric field. The advantage of this method, in contrast to other methods, is that it allows lysis without the introduction of any chemical and biological reagents and permits rapid recovery of intercellular organelles. Despite the advantages, issues such as high voltage requirement, bubble generation and Joule heating are associated with the electrical method.</p> <p>To alleviate the issues associated with electrical lysis, a new design and associated fabrication process for a microfluidic cell lysis device is described in this thesis. The device consists of a nanoporous polycarbonate (PCTE) membrane sandwiched between two PDMS microchannels with electrodes embedded at the reservoirs of the microchannels. Microcontact printing is used to attach this PCTE membrane with PDMS.</p> <p>By using this PCTE membrane, it was possible to intensify the electric field at the interface of two channels while maintaining it low in the other sections of the device. Furthermore, the device also allowed electrophoretic trapping of cells before lysis at a lower applied potential. For instance, it could trap bacteria such as <em>E. coli</em> from a continuous flow into the intersection between two channels for lower electric field (308 V/cm) and lyse the cell when electric field was increased more than 1000 V/cm into that section.</p> <p>Application of lower DC voltage with pressure driven flow alleviated adverse effect from Joule heating. Moreover, gas evolution and bubble generation was not observed during the operation of this device.</p> <p>Accumulation and lysis of bacteria were studied under a fluorescence microscope and quantified by using intensity measurement. To observe the accumulation and lysis, LIVE/DEAD BacLight Bacterial Viability Kit consisting of two separate components of SYTO 9 and propidium iodide (PI) into the cell suspension in addition to GFP expressed <em>E. coli</em> were used. Finally, plate counting was done to determine the efficiency of the device and it was observed that the device could lyse 90% of bacteria for an operation voltage of 300V within 3 min.</p> <p>In conclusion, a robust, reliable and flexible microfluidic cell lysis device was proposed and analyzed which is useful for sample pretreatment in a Micro Total Analysis System.</p> / Master of Applied Science (MASc)
30

MEMBRANE AND TEMPERATURE BASED METHODS FOR PROCESSING AND PURIFYING MONOCLONAL ANTIBODIES

Sadavarte, Hemant Rahul 04 1900 (has links)
<p>Monoclonal antibodies (mAbs) as therapeutic proteins have shown great potential in treatment of various human diseases because of their highly specific nature. This has attracted worldwide attention leading to increased demand for such mAb products. To meet this demand large scale manufacturing is carried out using recombinant mammalian cell culture techniques for high yields and faster production. mAb products are worth the investment if produced in their native state. The quantity of mAb present in such cell cultures is very less and therefore special care is needed while handling them. Purifying antibody molecules from heterogeneous cell culture impurities and maintaining their native functional state is a critical task mainly because these antibodies are labile in nature. Care also need to be exercised during processing because mAbs have inherent tendancy to aggregate which is undesirable since such aggregates in antibody formulation produces immunogenic reaction when injected in humans. The other important factor in mAb purification is the processing cost involved since majority of the total production cost is utilized for purification of mAb. Protein-A chromatography is the first choice for purifying antibodies and is widely adopted. However failure in distinguishing between monomer and aggregate antibody molecules along with harsh acidic processing conditions necessitates the use of further purification steps.</p> <p>In this work various techniques for mAb processing are discussed and are outlined below:</p> <p>Removal of impurities from mAbs is a major challenge and this thesis discusses various processing options available to purify these mAbs. Impurities in mAb products are usually the aggregate byproducts formed due to unfolded monomer antibody molecules. These molecules are naturally hydrophobic in nature and display great differences in hydrophobicity on aggregation. Hydrophobic interaction membrane chromatography (HIMC) makes use of this hydrophobicity difference and helps in removal of aggregate impurities from monomer antibody.</p> <p>Heavy chain mAbs (hcmAbs) are promising new developments in the area of biopharmaceuticals because of their unique structural composition. Similar to conventional mAbs these hcmAbs are also rapidly finding their way into therapeutic markets. Purifying hcmAbs will be an important step in their development and for this purpose we use HIMC technique for removing impurities and obtain pure product.</p> <p>Antibody molecules are almost always lost as aggregates which leads to great economic losses and the ability to disaggregate these mAb oligomers would be of significant practical and scientific interest. In this work a novel thermalcycling technique is discussed to disaggregate such mAb oligomers and potentially recover functional monomer mAb molecules.</p> / Master of Applied Science (MASc)

Page generated in 0.0573 seconds