• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 99
  • 39
  • 16
  • 5
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 196
  • 196
  • 44
  • 39
  • 33
  • 32
  • 32
  • 31
  • 28
  • 27
  • 24
  • 22
  • 21
  • 21
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Internal surface modification of zeolite MFI particles and membranes for gas separation

Kassaee, Mohamad Hadi 24 July 2012 (has links)
Zeolites are a well-known class of crystalline oxide materials with tunable compositions and nanoporous structures, and have been used extensively in catalysis, adsorption, and ion exchange. The zeolite MFI is one of the well-studied zeolites because it has a pore size and structure suitable for separation or chemical conversion of many industrially important molecules. Modification of zeolite structures with organic groups offers a potential new way to change their properties of zeolites, beyond the manipulation of the zeolite framework structure and composition. The main goals of this thesis research are to study the organic-modification of the MFI pore structure, and to assess the effects of such modification on the adsorption and transport properties of zeolite MFI sorbents and membranes. In this work, the internal pore structure of MFI zeolite particles and membranes has been modified by direct covalent condensation or chemical complexation of different organic molecules with the silanol defect sites existing in the MFI structure. The organic molecules used for pore modification are 1-butanol, 1-hexanol, 3-amino-1-propanol, 1-propaneamine, 1,3-diaminopropane, 2-[(2-aminoethyl)amino]ethanol, and benzenemethanol. TGA/DSC and 13C/29Si NMR characterizations indicated that the functional groups were chemically bound to the zeolite framework, and that the loading was commensurate with the concentration of internal silanol defects. Gas adsorption isotherms of CO2, CH4, and N2 on the modified zeolite materials show a range of properties different from that of the bare MFI zeolite. The MFI/3-amino-1-propanol, MFI/2-[(2-aminoethyl)amino]ethanol, and MFI/benzenemethanol materials showed the largest differences from bare MFI. These properties were qualitatively explained by the known affinity of amino- and hydroxyl groups for CO2, and of the phenyl group for CH4. The combined influence of adsorption and diffusion changes due to modification can be studied by measuring permeation of different gases on modified MFI membranes. To study these effects, I synthesized MFI membranes with [h0h] out-of-plane orientation on α-alumina supports. The membranes were modified by the same procedures as used for MFI particles and with 1-butanol, 3-amino-1-propanol, 2-[(2-aminoethyl)amino]ethanol, and benzenemethanol. The existence of functional groups in the pores of the zeolite was confirmed by PA-FTIR measurements. Permeation measurements of H2, N2, CO2, CH4, and SF6, were performed at room temperature before and after modification. Permeation of n-butane, and i-butane were measured before and after modification with 1-butanol. For all of the studied gases, gas permeances decreased by 1-2 orders of magnitude compared to bare MFI membranes for modified membranes. This is a strong indication that the organic species in the MFI framework are interacting with or blocking the gas molecule transport through the MFI pores. A detailed fundamental study of the CO2 adsorption mechanism in modified zeolites is necessary to gain a better understating of the adsorption and permeation behavior of such materials. Towards this end, an in situ FTIR study was performe.For the organic molecules with only one functional group (1-butanol, benzenemethanol, and 1-propaneamine), physical adsorption was found - as intuitively expected - to be the only observed mode of attachment of CO2 to the modified zeolite material. Even in the case of MFI modified with 1,3-diaminopropane, only physical adsorption is seen. This is explained by the isolated nature of the amine groups in the material, due to which only a single amine group can interact with a CO2 molecule. On the other hand, chemisorbed CO2 species are clearly observed on bare MFI, and on MFI modified with 3-amino-1-propanol or 2-[(2-aminoethyl)amino]ethanol. Specifically, these are carbonate-like species that arise from the chemisorption of CO2 to the silanol group in bare MFI and the alcohol groups of the modifying molecule. The possibility of significant contributions from external surface silanol groups in adsorbing CO2 chemisorbed species was ruled out by a comparative examination of the FTIR spectra of 10 μm and 900 nm MFI particles modified with 2-[(2-aminoethyl)amino]ethanol.
92

Techno-Economic Study of CO<sub>2</sub> Capture from Natural Gas Based Hydrogen Plants<br><br>

Tarun, Cynthia January 2006 (has links)
As reserves of conventional crude oil are depleted, there is a growing need to develop unconventional oils such as heavy oil and bitumen from oil sands. In terms of recoverable oil, Canadian oil sands are considered to be the second largest oil reserves in the world. However, the upgrading of bitumen from oil sands to synthetic crude oil (SCO) requires nearly ten times more hydrogen (H<sub>2</sub>) than the conventional crude oils. The current H<sub>2</sub> demand for oil sands operations is met mostly by steam reforming of natural gas. With the future expansion of oil sands operations, the demand of H<sub>2</sub> for oil sand operations is likely to quadruple in the next decade. As natural gas reforming involves significant carbon dioxide (CO<sub>2</sub>) emissions, this sector is likely to be one of the largest emitters of CO<sub>2</sub> in Canada. <br> <br>In the current H<sub>2</sub> plants, CO<sub>2</sub> emissions originate from two sources, the combustion flue gases from the steam reformer furnace and the off-gas from the process (steam reforming and water-gas shift) reactions. The objective of this study is to develop a process that captures CO<sub>2</sub> at minimum energy penalty in typical H<sub>2</sub> plants. <br> <br>The approach is to look at the best operating conditions when considering the H<sub>2</sub> and steam production, CO<sub>2</sub> production and external fuel requirements. The simulation in this study incorporates the kinetics of the steam methane reforming (SMR) and the water gas shift (WGS) reactions. It also includes the integration of CO<sub>2</sub> capture technologies to typical H<sub>2</sub> plants using pressure swing adsorption (PSA) to purify the H<sub>2</sub> product. These typical H<sub>2</sub> plants are the world standard of producing H<sub>2</sub> and are then considered as the base case for this study. The base case is modified to account for the implementation of CO<sub>2</sub> capture technologies. Two capture schemes are tested in this study. The first process scheme is the integration of a monoethanolamine (MEA) CO<sub>2</sub> scrubbing process. The other scheme is the introduction of a cardo polyimide hollow fibre membrane capture process. Both schemes are designed to capture 80% of the CO<sub>2</sub> from the H<sub>2</sub> process at a purity of 98%. <br> <br>The simulation results show that the H<sub>2</sub> plant with the integration of CO<sub>2</sub> capture has to be operated at the lowest steam to carbon (S/C) ratio, highest inlet temperature of the SMR and lowest inlet temperatures for the WGS converters to attain lowest energy penalty. H<sub>2</sub> plant with membrane separation technology requires higher electricity requirement. However, it produces better quality of steam than the H<sub>2</sub> plant with MEA-CO<sub>2</sub> capture process which is used to supply the electricity requirement of the process. Fuel (highvale coal) is burned to supply the additional electricity requirement. The membrane based H<sub>2</sub> plant requires higher additional electricity requirement for most of the operating conditions tested. However, it requires comparable energy penalty than the H<sub>2</sub> plant with MEA-CO<sub>2</sub> capture process when operated at the lowest energy operating conditions at 80% CO<sub>2</sub> recovery. <br> <br>This thesis also investigates the sensitivity of the energy penalty as function of the percent CO<sub>2</sub> recovery. The break-even point is determined at a certain amount of CO<sub>2</sub> recovery where the amount of energy produced is equal to the amount of energy required. This point, where no additional energy is required, is approximately 73% CO<sub>2</sub> recovery for the MEA based capture plant and 57% CO<sub>2</sub> recovery for the membrane based capture plant. <br> <br>The amount of CO<sub>2</sub> emissions at various CO<sub>2</sub> recoveries using the best operating conditions is also presented. The results show that MEA plant has comparable CO<sub>2</sub> emissions to that of the membrane plant at 80% CO<sub>2</sub> recovery. MEA plant is more attractive than membrane plant at lower CO<sub>2</sub> recoveries.
93

Adsorption, desorption, and steady-state removal of estrogenic hormone 17beta-estradiol by nanofiltration and ultrafiltration membranes

McCallum, Edward A. 20 July 2005 (has links)
Nanofiltration (NF) and ultrafiltration (UF) membranes were tested in cross-flow configuration for removal of the natural estrogenic hormone 17Beta-estradiol (E2). The NF membranes, FilmTec NF270 and NF90 and Saehan NE-70 and NE-90, showed significant adsorption of E2 during the initial stage of filtration followed by relatively high steady-state rejection. The rejection ranged from 70% for the NF270 to greater than 97% for the NF90 and NE-90. UF membranes, such as Saehan UE2010 and Sterlitech GH, showed relatively low rejection (0-20 %) at steady-state, but did show significant adsorption during the initial time period. In both NF and UF, adsorbed hormone was released into the permeate stream when the feed solution was replaced with pure water. The rate of desorption was approximately the same as that of adsorption. Similar results were observed at both high concentrations (100 microgram/L), and at lower, environmentally-relevant concentrations (100 ng/L). Fouling of membranes by natural organic matter improved rejection, as did operation at higher permeate flux and higher pH. These results indicate that the high initial rejection of hormones due to adsorption on membranes may not accurately reflect true rejection of hormones by these membranes at steady state.
94

Competitive Adsorption of Poly(1-vinylpyrrolidone-co-styrene) and Kymene onto Wood Fibers: the Improved Effect of Sequential Adsorption

Maurer, Ronald W. 25 August 2006 (has links)
Non-ionic copolymers, such as poly(1-vinylpyrrolidone-co-styrene), are used in the production of filtration membranes and fibers because of their ability to provide both hydrophilic and hydrophobic character. However, their non-ionic character and solubility in water prevents inexpensive recovery from waste streams. Wood fibers show potential as recovery agents because they are inexpensive, environmentally friendly, and have a large surface area per unit mass (200 m2/g). However, due to the anionic nature of the fiber surface, their adsorptive behavior is often limited to cationic species. We have shown that low-dosage application of a cationic polyamide epichlorohydrin resin, Kymene 557H®, using a sequential adsorption process can alter the fiber surface charge so as to provide more neutral surface area for the non-ionic polymer to adsorb; furthermore, the adsorbed Kymene 557H® does not block the approach of poly(1-vinylpyrrolidone-co-styrene). Single-component adsorption of poly(1-vinylpyrrolidone-co-styrene) was on the order of 10-3 g/g; with Kymene 557H® adsorbed on the fiber, the adsorption increased one order of magnitude to 10-2 g/g. This significant increase is caused by neutralization of fiber surface charge via Kymene 557H® adsorption, creating a surface more favorable for adsorption and recovery of non-ionic species.
95

Removal of N-nitrosamine by Nanofiltration and Reverse Osmosis Membranes

Miyashita, Yu 09 April 2007 (has links)
The rejections of selected N-nitrosamines by commonly used high-pressure nanofiltration (NF) and reverse osmosis (RO) membranes were quantitatively evaluated using a bench-scale cross-flow filtration apparatus. The selected nitrosamines included N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosopyrrolidine (NPYR), N-nitrosodiethylamine (NDEA), N-nitrosodi-n-propylamine (NDPA), N-nitrosodi-n-butylamine (NDBA) and N-nitrosodiphenylamine (NDPHA). Nitrosamine rejections were evaluated under steady state at elevated feed concentrations, since NDMA rejections were found to be consistent with feed concentrations over three orders of magnitude. The steady-state nitrosamine rejections by NF membranes varied significantly, from 9 to 75%, depending on nitrosamine compounds and tested membranes. For hydrophilic compounds, rejections increased with increasing molecular weight. The nitrosamine rejections by brackish RO membranes reached as high as 97% for higher molecular weight nitrosamines. However, for low molecular weight nitrosamines such as NDMA, rejections as low as 54% were observed. This low level of rejections was attributed to diffusive solute transport being more effective than convective transport. Physicochemical properties such as molecular weight and aqueous diffusivity showed reasonable correlations with nitrosamine permeability constants.
96

Separation Of Chromate And Borate Anions By Polymer Enhanced Ultrafiltration From Aqueous Solutions Employing Specifically Tailored Polymers

Oktar Doganay, Ceren 01 December 2007 (has links) (PDF)
In this study two polychelatogens for borate and a polyelectrolyte for chromate retention (R) were designed for investigating the effect of pH and loading (g metal /g polymer) on the separation performances of the synthesized polymers using continuous polymer enhanced ultrafiltration. Increase in pH increased the retention of borate for all of the synthesized polymers. Decrease in the loading resulted in an enhancement in boron retention with PNSM and PNSL. When COP was utilized, retentions remained almost constant after a certain loading, probably due to possible adverse effects of high polymer concentrations on polymer conformation in aqueous solutions. Decrease in loading caused an increase in the retention of chromate until a loading of 0.01. After that a slight decrease was observed. Maximum Cr (VI) retention was obtained as 0.70 for a loading of 0.01 and a pH of 4. Effect of crowding on Cr(VI) retention was also investigated. It was observed that retention does not only depend on the loading but also on the concentrations of both Cr (VI) and PDAM. Effect of the presence of competing anions such as chloride and sulfate on the retention of chromate was investigated to see the effect of competing anion charge to the selectivity of the synthesized polyelectrolyte. Addition of both anions decreased the retention of Cr(VI) . Divalent sulfate decreased the retention more than monovalent chloride indicating that charge of the anion may be the predominant variable in the retention of chromate using PDAM. Finally, dynamic and static light scattering measurements were performed to investigate the conformational changes in the structure of the synthesized polymers at different pH values as well as in the presence of boron in the solution. In this study, it is shown that PEUF can be successfully applied to for boron and Cr (VI) retention with the synthesized polymers. Satisfactory retention values were obtained both for boron and Cr (VI). Even if the retention of Cr (VI) decreased with the addition of high amount of competing anions, significant Cr (VI) retentions could be obtained.
97

Chiral separation using hybrid of preferential crystallization moderated by a membrane barrier

Svang-Ariyaskul, Apichit 08 March 2010 (has links)
The major innovation of this work is an establishment of a novel chiral separation process using preferential crystallization coupled with a membrane barrier. This hybrid process was proved to be promising from a significant increase in product yield and purity compared to existing chiral separation processes. This work sets up a process design platform to extend the use of this hybrid process to a separation of other mixtures. This novel process especially is a promising alternative for chiral separation of pharmaceutical compounds which include more than fifty percent of approved drugs world-wide. A better performance chiral separation technique contributes to cut the operating cost and to reduce the price of chiral drugs.
98

Optimization of asymmetric hollow fiber membranes for natural gas separation

Ma, Canghai 05 April 2011 (has links)
Compared to the conventional amine adsorption process to separate CO₂ from natural gas, the membrane separation technology has exhibited advantages in easy operation and lower capital cost. However, the high CO₂ partial pressure in natural gas can plasticize the membranes, which can lead to the loss of CH₄ and low CO₂/CH₄ separation efficiency. Crosslinking of polymer membranes have been proven effective to increase the CO₂ induced plasticization resistance by controlling the degree of swelling and segmental chain mobility in the polymer. This thesis focuses on extending the success of crosslinking to more productive asymmetric hollow fibers. In this work, the productivity of asymmetric hollow fibers was optimized by reducing the effective selective skin layer thickness. Thermal crosslinking and catalyst assisted crosslinking were performed on the defect-free thin skin hollow fibers to stabilize the fibers against plasticization. The natural gas separation performance of hollow fibers was evaluated by feeding CO₂/CH₄ gas mixture with high CO₂ content and pressure.
99

Novel silica membranes for high temeprature gas separations

Bighane, Neha 23 January 2012 (has links)
Membrane materials for gas separations span a wide range including polymers, metals, ceramics and composites. Our aim is to create economical hydrothermally stable membranes that can provide high H₂-CO₂ separation at a temperature of 300 degree Celsius, for application in the water-gas shift reactor process. The present work describes the development of novel silica and silica-titania membranes from the controlled oxidative thermolysis of polydimethylsiloxane. The scope of this thesis is fabrication of membranes, material characterization and preliminary gas permeation tests (35-80 degree Celsius) on PDMS derived silica membrane films. The developed membranes can withstand up to 350 degree C in air. High permeabilties of small gas penetrants like He, H₂ and CO₂ have been observed and fairly high separation factors of O₂/N₂=3, H₂/N₂= 14 and H₂/CH₄=11 have been obtained. As the temperature of operation increases, the permeability of hydrogen increases and the separation factor of H₂ from CO₂ increases. The silica membranes exhibit gas separation factors higher than the respective Knudsen values. Additionally, design and construction of a new high temperature gas permeation testing system is described, which will cater to gas permeation tests at temperatures up to 300 degree Celsius for future work. The thesis also includes a detailed plan for future studies on this topic of research.
100

Single-walled metal oxide nanotubes and nanotube membranes for molecular separations

Kang, Dun-Yen 07 May 2012 (has links)
Synthetic single-walled metal oxide (aluminosilicate) nanotubes (SWNTs) are emerging materials for a number of applications involving molecular transport and adsorption due to their unique pore structure, high surface reactivity, and controllable dimensions. In this thesis, I discuss the potential for employing SWNTs in next generation separation platforms based upon recent progress on synthesis, interior modification, molecular diffusion properties, transport modeling and composite membrane preparation of metal oxide SWNTs. First, I describe the structure, synthesis, and characterization of the SWNTs. Thereafter, chemical modification of the nanotube interior is described as a means for tuning the nanotube properties for molecular separations. Interior functionalization of SWNTs (e.g. carbon nanotubes and metal oxide nanotubes) is a long-standing challenge in nanomaterials science. After controlled dehydration and dehydroxylation of the SWNTs, I then demonstrate that the SWNT inner surface can be functionalized with various organic groups of practical interest via solid-liquid heterogeneous reactions. Finally, I describe a mass transport modeling and measurements for composite membranes composed of SWNTs as fillers. This work demonstrates the use of SWNTs for novel scalable separation units from both a nanoscale and a macroscale point of view.

Page generated in 0.1113 seconds