• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 21
  • 7
  • Tagged with
  • 87
  • 33
  • 32
  • 21
  • 21
  • 21
  • 19
  • 18
  • 16
  • 16
  • 16
  • 16
  • 16
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Sterol requirements in Drosophila melanogaster

Almeida de Carvalho, Maria Joao 14 October 2009 (has links) (PDF)
Sterol is an abundant component of eukaryotic cell membranes and is thought to influence membrane properties such as permeability, fluidity and microdomain formation. Drosophila is an excellent model system in which to study functional requirements for membrane sterol because, although it does not synthesize sterol, it nevertheless requires sterols to complete development. Moreover, Drosophila normally incorporates sterols into cell membranes. Thus, dietary sterol depletion can be used to specifically reduce membrane sterol levels. In contrast, vertebrates do synthesize cholesterol. In this way, sterol depletion in vertebrates demand the use of approaches such as chemical extractions, drug treatments or genetic manipulation which are prone to have side effects. We have controlled the level and type of dietary sterol available to developing Drosophila larvae in order to investigate the requirement for sterol in cell membranes, and to distinguish it from the function of sterol as a precursor for signaling molecules. Strikingly, we show that membrane sterol levels can be reduced 6-fold in most tissues without affecting cell or larval viability. Larvae respond to sterol depletion by arresting their growth and development, and by increasing the level of specific sphingolipid variants that promote survival when sterol is scarce. Thus, non-sterol lipids are able to substitute for sterols in the maintenance of basic membrane biophysical properties required for life. Despite this, Drosophila larvae regulate their growth to maintain membrane sterol levels within tight limits. The existence of this novel membrane sterol-dependent growth control mechanism indicates an important role for bulk membrane sterol in the tissue specific functions of differentiated cells.
32

Some applications of immunocytochemistry on thin cryosections localization studies of albumin, lysosomal proteins and lectin-binding oligosaccharides /

Brands, Rudi, January 1983 (has links)
Thesis (doctoral)--Utrecht, 1983.
33

Membrane phosphorylation and nerve cell function neuropharmacological and neurophysiological studies /

Bär, Peter Rudolf, January 1982 (has links)
Thesis (doctoral)--Utrecht, 1982.
34

Sterol requirements in Drosophila melanogaster

Almeida de Carvalho, Maria Joao 28 September 2009 (has links)
Sterol is an abundant component of eukaryotic cell membranes and is thought to influence membrane properties such as permeability, fluidity and microdomain formation. Drosophila is an excellent model system in which to study functional requirements for membrane sterol because, although it does not synthesize sterol, it nevertheless requires sterols to complete development. Moreover, Drosophila normally incorporates sterols into cell membranes. Thus, dietary sterol depletion can be used to specifically reduce membrane sterol levels. In contrast, vertebrates do synthesize cholesterol. In this way, sterol depletion in vertebrates demand the use of approaches such as chemical extractions, drug treatments or genetic manipulation which are prone to have side effects. We have controlled the level and type of dietary sterol available to developing Drosophila larvae in order to investigate the requirement for sterol in cell membranes, and to distinguish it from the function of sterol as a precursor for signaling molecules. Strikingly, we show that membrane sterol levels can be reduced 6-fold in most tissues without affecting cell or larval viability. Larvae respond to sterol depletion by arresting their growth and development, and by increasing the level of specific sphingolipid variants that promote survival when sterol is scarce. Thus, non-sterol lipids are able to substitute for sterols in the maintenance of basic membrane biophysical properties required for life. Despite this, Drosophila larvae regulate their growth to maintain membrane sterol levels within tight limits. The existence of this novel membrane sterol-dependent growth control mechanism indicates an important role for bulk membrane sterol in the tissue specific functions of differentiated cells.
35

Membranes via particle assisted wetting

Marczewski, Dawid 05 June 2009 (has links)
Spreading of mixtures of oil with suitable silica particles onto a water surface leads to the formation of composite layers in which particles protrude at the top and at the bottom from the oil. Solidification of the oil and removal of the particles give rise to porous membranes. Pore widths and membrane thicknesses depend on particle sizes and usually are in the range of 70 – 80% of their diameters. Often freely suspended porous membranes are too fragile to operate them in pressure filtration without supportive structure. To improve mechanical stability of porous membranes, a mixture of silica particles with an oil is spread onto a nonwoven fibrous support that was drenched with water. Solidification of the oil and removal of particles yields porous membrane attached to the fibers of the support. Due to inhomogeneous surface of the fabric, the membranes that are attached to it are corrugated. To obtain flat supportive structures, glass beads with 75 μm in diameter are spread onto the water surface with the oil. Solidification of the oil and then removal of particles gives rise to porous membranes with pore diameters in micrometer range. Another concept of improvement of mechanical stability is the preparation of asymmetric membranes via spreading of a mixture of two sorts of particles with opposite surface properties with the oil onto the water surface. After solidification of the oil and removal of particles, membranes with pores width in the range from 30 – 50 nm are obtained. Slow removal of silica particles from composite monolayer that floats on the water surface gives rise to silica rings in intermediate stages of removal. Mixed matrix membranes with embedded carbon molecular sieves are prepared in a similar process as detailed above by using carbon particles instead of silica. Carbon molecular sieves protrude at the top and bottom from the polymeric matrix. Theoretical prediction of permeability and selectivity through these membranes are much higher than in membranes where particles are smaller than the membrane thickness. / Spreitet man Mischungen eines Öls mit geeigneten Kieselgelpartikeln auf eine Wasseroberfläche, führt dies zur Bildung gemischter Schichten, in denen die Partikel auf der Ober- und Unterseite aus dem Öl herausragen. Härtet man das Öl aus und entfernt die Partikel, erhält man poröse Membranen mit einheitlichen Poren. Dabei hängen die Porenweiten und Membrandicken von der Partikelgröße ab und betragen üblicherweise 70 – 80 % von deren Durchmesser. Oft sind freitragende poröse Membranen zu zerbrechlich um mit ihnen Druckfiltration ohne Stützstruktur durchzuführen. Um die mechanische Stabilität von porösen Membranen zu erhöhen spreitet man eine Mischung aus Kieselgelpartikeln und einem Öl auf einem Vliesstoff, der mit Wasser getränkt ist. Das Aushärten des Öls und die Entfernung der Partikel führt zu einer porösen Membran, die an die Fasern der Stützstruktur angeheftet ist. Durch die inhomogene Oberfläche des Vliesgewebes sind die daran angehefteten Membranen gewellt. Um eine ebene Stützstruktur zu erhalten, werden Mischungen aus dem Öl und Glaskugeln mit einem Durchmesser von 75 μm verwendet. Das Aushärten des Öls und die Entfernung der Partikel führt zu ebenen porösen Membranen mit Porendurchmessern im Mikrometerbereich. Ein weiteres Konzept, um die mechanische Stabilität zu erhöhen, ist die Herstellung asymmetrischer Membranen mit Hilfe des Spreitens einer Mischung zweier Partikelsorten mit unterschiedlichen Oberflächeneigenschaften mit dem Öl auf die Wasseroberfläche. Nach dem Aushärten des Öls und der Entfernung der Partikel erhält man eine asymmetrische Membran mit kleinen Porenweiten an der Oberseite und großen Porenweiten an der Unterseite. Durch langsames Entfernen der Kieselgelpartikel aus der gemischten Schicht, die auf der Wasseroberfläche schwimmt, kann man in einem Zwischenstadium Kieselgelringe erhalten. Kompositmembranen (mixed matrix membranes) mit eingebetteten Kohlenstoffmolekularsieben werden in einem gleichen Prozess wie oben beschrieben hergestellt, indem man Kohlenstoffpartikel anstatt der Kieselgelpartikel verwendet. Die Kohlenstoffmolekularsiebe ragen auf der Ober- und Unterseite aus der Polymermatrix heraus. Die theoretisch vorhersagten Durchlässigkeiten und Selektivitäten solcher Membranen sind wesentlich höher als bei Membranen, in denen die Partikel kleiner als der Membrandicke sind.
36

Advanced Fluorescence Correlation Techniques to Study Membrane Dynamics / Neuartige Fluoreszenz-Korrelations-Techniken zur Untersuchung von Membrandynamik

Ries, Jonas 27 August 2008 (has links) (PDF)
Fluorescence Correlation Spectroscopy (FCS) is a powerful tool to measure important physical quantities such as concentrations, diffusion coefficients, diffusion modes or binding parameters, both in solution and in membranes. However, it can suffer from severe artifacts, especially in non-ideal systems. Here we develop several novel implementations of FCS which overcome these limitations and facilitate accurate and quantitative determination of dynamic parameters in membranes. Two-focus FCS with camera-detection allows for accurate and calibration-free determination of diffusion coefficients. Confocal FCS using a laser scanning microscope provides an unprecedented positioning accuracy which enabled us to study, for the first time with FCS, dynamics in bacterial membranes. Scanning FCS with a scan path perpendicular to the membrane plane allows to correct for instabilities permitting long measurement times necessary to study slow diffusion. It can easily be extended to measure calibration-free diffusion coefficients with two-focus scanning FCS and to quantify binding with dual color scanning FCS. Spectral crosstalk can be avoided effectively by using alternating excitation. Using this method we were able to perform measurements in systems previously not accessible with FCS, such as yeast cell membranes or membranes of living zebrafish embryos. Line-scan FCS with a scan path in the membrane plane uses the parallel acquisition along the line to increase the statistical accuracy and decrease the measurement times. Knowledge of the scan speed serves as an internal calibration, enabling accurate diffusion and concentration measurements within seconds, hardly affected by photobleaching. Both realizations of scanning FCS can be easily implemented with commercial laser scanning microscopes. Often, a fluorescence background around the membrane cannot be avoided. The high surface selectivity needed in this case can be achieved efficiently by using a novel objective for FCS, the supercritical angle objective, which produces a very flat and laterally confined detection volume. Another technique with similar surface selectivity is FCS with total internal reflection excitation (TIRFCS). Due to the lack of a correct model, the accurate analysis of TIR-FCS data was previously not possible. In this work we develop such a model, enabling quantitative measurements of membrane dynamics with TIR-FCS. The novel FCS techniques developed here will have a high impact on the use of FCS to address key questions in biological systems, previously inaccessible by other methods. / Fluoreszenz-Korrelations-Spektroskopie (FCS) ist eine mächtige Methode, um wichtige physikalische Parameter wie Konzentrationen, Diffusionskoeffizienten, Diffusionsarten oder Bindungsparameter in Lösung und in Modell- oder Zellmembranen zu bestimmen. In nichtidealen Systemen ist FCS fehleranfällig. In dieser Arbeit entwickeln wir mehrere neuartige Realisierungen von FCS, welche diese Fehlerquellen umgehen und die genaue und quantitative Messung dynamischer Parameter in Membranen ermöglichen. Zwei-Fokus FCS mit Kamera-Detektion erlaubt eine genaue und kalibrationsfreie Messung von Diffusionskoeffizienten. Konfokale FCS mit einem Laserscanningmikroskop besitzt eine bislang unerreichte Positionsgenauigkeit, welche uns erstmals dynamische Messungen in Bakterienmembranen mit FCS ermöglichte. Scanning FCS mit einem Scanweg senkrecht zur Membran ermöglicht eine Korrektur von Instabilitäten und damit lange Messzeiten, die zur Bestimmung langsamer Diffusionskoeffizienten notwendig sind. Eine Erweiterung zur kalibrationsfreien Messung von Diffusionskoeffizienten mit Zwei-Fokus Scanning FCS und von Bindungsparametern mit Zwei-Farben Scanning FCS ist einfach. Mit diesen Methoden konnten wir in Systemen messen, die bislang FCS nicht zugänglich waren, so in Hefezellmembranen oder in Membranen lebender Zebrafischembryonen. Line-scan FCS besitzt einen Scanweg parallel zur Membran. Die parallele Messung entlang der ganzen Linie führt zu einer deutlichen Verbesserung der Statistik und damit zu kurzen Messzeiten. Die Kenntnis der Scangeschwindigkeit dient einer internen Kalibration und erlaubt eine akkurate Bestimmung von Diffusionskoeffizienten und Konzentrationen innerhalb weniger Sekunden, kaum beeinflusst vom Bleichen von Fluorophoren. Beide Arten von Scanning FCS können mit einem kommerziellen Laserscanningmikroskop realisiert werden. Häufig kann bei FCS Messungen ein fluoreszierender Hintergrund nicht vermieden werden. Hier ist eine hohe Oberflächenselektivitiät nötig, welche effizient mit einem neuartigen Objektiv erreicht werden kann. Dieses Supercritical Angle-Objektiv erzeugt ein sehr flaches und lateral begrenztes Detektionsvolumen. Eine weitere Methode mit einer ähnlich guten Oberflächenselektivität ist FCS mit Anregung über totale interne Reflektion (TIR-FCS). Bislang war eine quantitative Analyse der TIR-FCS Daten kaum möglich, da keine ausreichend genaue theoretische Beschreibung existierte. In dieser Arbeit entwickeln wir ein akkurates Modell, welches quantitative Messungen mit TIR-FCS erlaubt. Die hier entwickelten neuartgien FCS-Techniken ermöglichen die Untersuchung biologischer Fragestellungen, welche bislang keiner anderen Methode zugänglich sind.
37

Mikro- und mesoporöses Siliciumcarbid aus siliciumorganischen Precursoren

Klose, Theresia 09 July 2009 (has links) (PDF)
Die Pyrolyse ausgewählter Polysiloxane und Poly(chlor)silane erzeugt meso- und mikroporöses SiC, welches als Hochtemperatur-beständiges Material für Filter, Katalysatorträger und Sensoren ein hohes Anwendungspotential besitzt. Der Pyrolyseprozess bis 1500 °C wird thermogravimetrisch und massenspektrometrisch verfolgt und die resultierenden "Bulk"-Pyrolysate mittels DRIFT-Messungen, Elementaranalyse, XRD, N2-Adsorption und FESEM charakterisiert. Zusammensetzung, Kristallinität und Poreneigenschaften des precursorabgeleiteten SiC lassen sich über die Precursorart sowie über die Pyrolysetemperatur und -dauer steuern. Die Poren entstehen je nach Precursor zwischen 1200 und 1500 °C. Im Falle von mesoporösen Pyrolysaten wird die Porenbildung in erster Linie durch die Abgabe gasförmiger Reaktionsprodukte hervorgerufen. Die Porengrößen dieser Produkte liegen zwischen 6 und 12 nm und die spezifische Oberfläche beträgt bis zu 270 m2/g. Bei den mikroporösen Pyrolysaten, gekennzeichnet durch Poren von 1,5 nm Größe und spezifischen Oberflächen bis 530 m2/g, werden die Poreneigenschaften vor allem durch den im Überschuss vorhandenen elementaren Kohlenstoff geprägt.
38

Methylchlorpolysilane als SiC-Precursoren im präkeramischen Stadium

Lange, Thomas 21 July 2009 (has links) (PDF)
Methylchlorpolysilane/polycarbosilane sind geeignete Vorstufen für Siliciumcarbid. Deren Überführung in den keramischen Zustand erfolgt durch Pyrolyse bis 1500 °C. Eine Steuerung der auf der katalytischen Disproportionierung von Disilanverbindungen basierenden Synthese und das Design der Precursoreigenschaften ist über die Gestaltung des Katalysators und Reaktionsregimes sowie Additive (z. B. borhaltigen Verbindungen) gegeben. Synthetisiert wurden unterschiedliche Polysilane, Polycarbosilane sowie neuartige Polyborocarbosilane. Der präkeramische Strukturwandel der Polymere lässt sich gezielt beeinflussen, insbesondere der Vernetzungsprozess durch thermischen Energie-Input sowie durch Zugabe von reaktiven Komponenten. Der Verlauf der Molekulargewichtsverteilungsfunktionen wurde mittels Gelpermeationschromatographie verfolgt und die ermittelten Molekulargewichte mit unterschiedlichen Standards bewertet. Die Precursoren sind pyrolytisch in mikroporöses SiC-Material überführbar. Eine Skalierung des Porendurchmessers über die Variation der Precursorstruktur gelang im Nanometerbereich. Anwendungsbeispiele wurden aufgezeigt.
39

Protein-lipid interactions in raft-exhibiting membranes probed by combined AFM and FCS

Chiantia, Salvatore 22 May 2008 (has links)
The cellular membrane is a complex biological entity, far from being an inert assembly of protein and lipids which separates cells from the surrounding environment. A multitude of biological processes, ranging from active transport of ions into and out of the cell, to the immune response, are regulated at the level of the plasma membrane. The understanding of their molecular basis is among the central goals of modern biological research. In order to dissect the complexity of actual cell membranes, which involves a very complex network of intermolecular interactions, a “divide and conquer” strategy proves very useful. To this end, researchers try to isolate molecules from complex biological contexts to understand their function in simple model systems under controlled conditions. A variety of model membranes have thus been developed in order to gain insight into membrane processes. This approach has resulted in a deeper knowledge on how lipids and proteins interact and how these interactions govern the function of cellular membranes. In the recent past in fact, a connection has been established between the lateral structure of the plasma membrane and its biological function. Furthermore, a large range of biophysical techniques have been used to characterize protein-lipid microdomains. For example, atomic force microscopy (AFM) is a powerful technique which allows a highly detailed topographical characterization of lipid domains in physiological conditions. While AFM imaging offers an extremely high spatial resolution, up to the nanometer scale, the limited image acquisition speed (minutes) can pose a severe drawback in adequately studying fast dynamic processes. On the other hand, fluorescence based imaging techniques are much faster (10-3-100 s), but certainly lack the high spatial resolution that AFM offers. FCS in particular can also provide information about dynamic processes, like diffusion of fluorescent membrane components. For these reasons, implementing a combination of the above mentioned techniques on the same sample (e.g. cell membrane models) would prove extremely beneficial in the complete dynamic and structural characterization of molecular interactions. . The work described in this thesis can be summarized in two main points: i) the development of a novel combined approach of atomic force microscopy (AFM), laser scanning imaging (LSM), and fluorescence correlation spectroscopy (FCS) and ii) the study of the effects of ceramide in the lateral organization of model plasma membranes. We described one of the first simultaneous applications of AFM and FCS on biologically relevant systems. More specifically, model membranes showing complex phase separation were investigated with a combined approach of AFM, confocal fluorescence imaging, force measurements and FCS, based on commercially available instruments. AFM conveys information about the structural and mechanical properties of the different lipid phases. Different membrane domains can be distinguished based on height difference, elastic properties and line tension as measured by the AFM tip. Simultaneous optical measurements offer the correlation of these data in real time with the partition behavior and diffusion of fluorescent lipids and proteins. We established a clear link between the local membrane viscosity, probed by FCS, and the lipid-lipid interactions involved in line tension, probed by AFM force measurements. An example of a significant drawback circumvented by the AFM-FCS approach involves the use of AFM micromanipulation to eliminate unwanted interactions between lipid particles — similar to intra-cellular vesicles found in vivo experiments — and the membrane, which usually result in distorted FCS autocorrelation curves. Finally, the combined application of AFM and FCS on membrane-anchored proteins reconstituted in lipid bilayers has been instrumental in clarifying inconsistencies that arose in work that focused solely on either AFM or fluorescence techniques. We have shown that, in the case of proteins diffusing in the plane of the membrane, AFM can unambiguously detect only a small immobile fraction. Furthermore, since AFM detection of proteins might be facilitated by high local membrane viscosity (e.g. in ordered lipid phases), the measurement of protein partition between disordered and ordered membrane domains might be biased toward the latter. In this case, the use of FCS as a complementary technique allows a more thorough investigation and deeper understanding of the system of interest. The second part of this thesis dealt with the study of complex lipid mixtures which are used to model the putative lipid/proteins domains in cells, called “rafts”. Firstly, we proved how the combined fluorescence imaging/AFM approach is useful in general for studying supported lipid membranes and the role of lipid domains in biological contexts. We investigated the effect of environmental stress on biological membranes and the protective effects of several substances. Our experimental approach was shown to be a new valuable method to visualize the dehydration damage and its effects on the lateral organization of lipid domains. Our results demonstrated that disaccharides like trehalose or sucrose are effective in protecting lipid membranes, not only on a macroscopic scale — preserving the overall integrity of the bilayer — but also on a microscopic scale, preventing the clustering of microdomains. These phenomena are interesting in the context of biological damage to living cells which need to be stored for long time, like organs to be transplanted or blood platelets. Finally, a large section of this thesis focused on the effects of a specific lipid called “ceramide” on the lateral organization of proteins and lipids in the plasma membrane. Ceramide is produced by cells in several situations, like bacterial infections or apoptosis. As consequence of ceramide production in vivo, the local concentration and the dynamic behavior of lipids and membrane receptors are supposed to exhibit strong variations. In order to understand the molecular mechanisms responsible for these effects, we applied a combination of AFM, FCS and fluorescence imaging on simple model membranes containing ceramide. We could show for the first time that, in presence of raft-like Lo/Ld phase separation, physiological quantities of ceramide induced the formation of a highly ordered gel phase, constituted of ceramide and sphingomyelin. The enzymatic production of ceramide was monitored both in supported and in free-standing bilayers. In the second case, ceramide production was connected to selective vesicle budding from the raft-like phase. Since short-chain analogues are often used in both medical applications and biochemical research to mimic the effect of long-chain ceramides, we investigated the effect of chain-length on ceramide-induced membrane reorganization. We could show that only long-chain ceramides (C18 and C16) form highly ordered domains. Interestingly, FCS measurements indicated that the physical properties of the Lo raft-like domains are hardly affected by the presence of ceramide domains. Furthermore, the increased thickness of the Ld phase — as measured by AFM — and its higher viscosity — as measured by FCS — strongly support the hypothesis of ceramide-induced cholesterol displacement from rafts. On the other hand, short-chain ceramides showed completely different biophysical properties that lead to a destabilization of the raft domains, possibly acting as surfactants between the different lipid phases. Our findings contribute to the explanation of in vivo experiments where short-chain ceramides inhibit cell signaling by disrupting the lipid order in the plasma membrane. We have so far demonstrated that ceramide plays a fundamental role in lipid-lipid interactions. In a physiological context, it is also known to produce dramatic effects in living cells. Since a majority of the processes in vivo are thought to be governed by the activity of proteins, it is highly likely that ceramide not only affects lipid organization but also modifies protein-protein and protein-lipid interactions to produce its effects. To test this hypothesis, we reconstituted several membrane proteins in lipid bilayers containing Ld, Lo, and ceramide-rich domains. We were able to show that some membrane proteins are sorted into ceramide-rich domains. More specifically, the raft-associated proteins we tested were enriched in the highly ordered ceramide-rich domains, while the Ld-associated components were excluded from them. Furthermore, the inclusion of any membrane component in ceramide-rich domains is directly connected to a dramatic reduction of its in-plane diffusion. In an in vivo context, such a reorganization of membrane receptors might be used by the cell to alter the signaling process, for example, by i) separating raft receptors from inhibitors with lower raft affinity, ii) bringing both raft-associated receptors and raft-associated signaling molecules into contact, or iii) stabilizing the interactions between a receptor and its ligand by decreasing their diffusion coefficients. In conclusion, this thesis describes a novel combination of AFM, LSM, and FCS for the investigation of the lateral organization of biological membranes. Our results show that this approach applied on model membranes of increasing complexity is an effective tool for understanding the molecular mechanisms behind the organization of biological membranes. This report opens up new possibilities for further investigation in living cell membranes using the same methodology we have described.
40

The Treatment of Saline Solutions Utilizing Ceramic Membranes in Membrane Distillation Processes

Schnittger, Johann 21 March 2022 (has links)
Die Entsalzung ist eine der wichtigsten Technologien, um den Frischwasserbedarf in vielen Regionen der Welt sicherzustellen. Bevölkerungswachstum, der Klimawandel und stetig steigender Konsum werden die Bedeutung von Entsalzungstechnologien weiterwachsen lassen. Die Möglichkeit des Einsatzes etablierter konventioneller Verfahren wird begrenzt durch die hohen ökologischen und ökonomischen Kosten dieser Verfahren. Unkonventionelle Entsalzungsverfahren wie die Membrandestillation (MD) bieten einige Vorteile, mit denen sie konventionelle Verfahren jenseits dieser Limitationen ergänzen können. Die MD ist ein thermisch angetriebener Prozess, in welchem eine hydrophobe Membran das warme, flüssige Feed räumlich von der kälteren Permeatseite trennt, während nur dampfförmige Moleküle durch die Membran permeieren können. Wie in allen membranbasierten Trennprozessen bestimmen die Charakteristika der verwendeten Membran die Leistungsfähigkeit (Massentransport, Rückhaltevermögen und Energieeffizienz) des Prozesses und das damit verbundene kommerzielle Interesse. Durch ihre intrinsisch hydrophoben Materialeigenschaften und ihren guten Massentransfercharakteristika ist die Verwendung von Polymermembranen in der MD aktuell Stand der Technik. Um die Einsatzmöglichkeiten von MD Verfahren auf aggressive Lösungen zu erweitern, werden thermisch, mechanisch und chemisch stabile Membranen benötigt. Obwohl keramische Membranen im Vergleich zu Polymermembranen eine höhere Stabilität aufweisen (wodurch die Behandlung von aggressiven Lösungen mit MD-Verfahren prinzipiell möglich wird) muss die Eignung von keramischen Membranen für MD-Verfahren wissenschaftlich belegt und ein Konzept zur Membranoptimierung entwickelt werden. Im Rahmen dieser Arbeit wurden verschiedene Typen modifizierter keramischer Membranen (z.B. Materialauswahl und Schichtaufbau) vollständig im Hinblick auf ihre spezifischen Membraneigenschaften (z.B. Porengröße, Wärmeleitfähigkeit und hydrophobe Eigenschaften) charakterisiert und anschließend unter Verwendung von salzhaltigen Lösungen in der Direktkontaktmembrandestillation (DCMD) und der Vakuummembrandestillation (VMD) getestet. Diese Daten wurden genutzt, um den Stofftransport von asymmetrischen keramischen Membranen unter Verwendung eines anerkannten VMD-Modells (basierend auf dem Dusty-Gas-Modell) zu berechnen und um die Leistungsfähigkeit (d.h. Stabilität, Stofftransport, Selektivität und Energieeffizienz) von modifizierten keramischen Membranen in der MD in Hinblick auf spezifische Membraneigenschaften und Verfahrensparameter zu bewerten. Anschließend wurde die Eignung von keramischen Membranen für MD-Prozesse evaluiert und Optimierungskonzepte für keramische Membranen vorgeschlagen. Damit wurde mit dieser Arbeit die Grundlage gelegt, die Kommerzialisierung von keramischen Membranen in der MD voranzutreiben. Keramische Membranen wurde mit verschiedenen Molekülen hinsichtlich ihrer Oberflächeneigenschaften modifiziert. Dadurch konnte ein nicht-fluorisiertes Molekül als potenzielle Alternative zu den üblicherweise verwendeten fluorierten Molekülen identifiziert wurde. Für alle modifizierten Membranen (unabhängig von dem Hydrophobierungsmittel) mit Porengrößen kleiner oder gleich 400 nm, wurde ein Flüssigkeitseindringdruck (LEP) über 2,5 bar gemessen, welcher jedoch eine starke Abhängigkeit von den Eigenschaften der Testlösung zeigt. Während symmetrisch aufgebaute keramische Membranen modifiziert mit einem fluorierten Hydrophobierungsmittel die Behandlung mit heißer, salzhaltiger Lösung über 96 Stunden standhielten, zeigten diese deutlich geringere Permeatflüsse in der VMD als asymmetrisch strukturierte keramische Membranen. Der Stofftransport von asymmetrischen keramischen Membranen war in der VMD höher ausgeprägt als in der DCMD. Der Stofftransport von asymmetrischen keramischen Membranen wird in der VMD vorwiegend von den Supporteigenschaften beeinflusst, während der Strofftransport in der DCMD erheblich von den Eigenschaften der trennaktiven Membranschicht (z. B. die Porengröße) bestimmt wird. Ein in der Literatur beschriebenes VMD-Modell in Bezug vorhandener Defizite durch Korrekturfaktoren erfolgreich erweitert und zur Berechnung des Strofftransportes für asymmetrische TiO2 Membranen angewandt. TiO2 und Al2O3 Membranen wurden in der VMD erfolgreich zur Behandlung hochkonzentrierter Salzlösungen (synthetische und reale Lösungen) verwendet. TiO2 Membranen zeigten höhere Permeateflüsse als Al2O3 Membranen in der DCMD und der VMD. Das begründet sich insbesondere bedingt durch die bessere Moderierung von Temperaturpolarisationseffekten aufgrund der geringen Wärmeleitfähigkeit von TiO2 Membranen. Beispielsweise wurden bei der Behandlung einer hochkonzentrierte NaCl-Lösung (350 g NaCl pro kg H2O) mit einer TiO2 Membran (Finale Porengröße: 100 nm) in der VMD hervorragende Salzrückhalte von über 99,9 % und Permeatflüsse von bis zu 35 kg/( m² h) erreicht. Die Stofftransportraten der modifizierten keramischen Membranen in der VMD sind im Vergleich zu den Permeatflüssen von Polymermembranen (Literaturwerte) unter ähnlichen Testbedingungen wettbewerbsfähig. Es wurde gezeigt, dass die geringe Energieeffizienz von keramischen Membranen weiterhin die größte Herausforderung für deren kommerzielle Nutzung in MD-Prozessen darstellt und diese der Fokus der Membranoptimierung darstellen sollte.

Page generated in 0.0779 seconds