• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 9
  • 5
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 61
  • 14
  • 12
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 7
  • 7
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

State of the Union : How democracy affects the European political process

Huldin, Daniel January 2019 (has links)
This paper investigates the correlation between how Members of the European Parliament (MEPs) vote and their respective domestic democracy level. In doing so, it tests two hypotheses – first, that domestic democracy level affects MEP voting conduct. Second, that domestic democracy level affects the way MEPs tend to be disloyal to their European Party Groups (EPGs). The first hypothesis regarding the correlation between democracy level and MEP voting conduct is analysed statistically through logistic regression, the data for which has been collected from VoteWatch, whereas the second hypothesis is tested in a qualitative discussion based upon a smaller dataset.                       Both hypotheses are supported by the data, but because the study is based on a single issue, one can only feasibly generalise the findings to similar cases voted upon by the European Parliament. This paper uses a motion in the Parliament that directly concerns democratic values – as such, any conclusions drawn only apply to other cases similarly centred on democratic values. However, the findings of this study underline the importance of further studies on the topic of the influence of democracy levels on the political process of the European Union.
12

Aerosol Characterization and Analytical Modeling of Concentric Pneumatic and Flow Focusing Nebulizers for Sample Introduction

Kashani, Arash 31 May 2011 (has links)
A concentric pneumatic nebulizer (CPN) and a custom designed flow focusing nebulizer (FFN) are characterized. As will be shown, the classical Nukiyama-Tanasawa and Rizk-Lefebvre models lead to erroneous size prediction for the concentric nebulizer under typical operating conditions due to its specific design, geometry, dimension and different flow regimes. The models are then modified to improve the agreement with the experimental results. The size prediction of the modified models together with the spray velocity characterization are used to determine the overall nebulizer efficiency and also employed as input to a new Maximum Entropy Principle (MEP) based model to predict joint size-velocity distribution analytically. The new MEP model is exploited to study the local variation of size-velocity distribution in contrast to the classical models where MEP is applied globally to the entire spray cross section. As will be demonstrated, the velocity distribution of the classical MEP models shows poor agreement with experiments for the cases under study. Modifications to the original MEP modeling are proposed to overcome this deficiency. In addition, the new joint size-velocity distribution agrees better with our general understanding of the drag law and yields realistic results.
13

Aerosol Characterization and Analytical Modeling of Concentric Pneumatic and Flow Focusing Nebulizers for Sample Introduction

Kashani, Arash 31 May 2011 (has links)
A concentric pneumatic nebulizer (CPN) and a custom designed flow focusing nebulizer (FFN) are characterized. As will be shown, the classical Nukiyama-Tanasawa and Rizk-Lefebvre models lead to erroneous size prediction for the concentric nebulizer under typical operating conditions due to its specific design, geometry, dimension and different flow regimes. The models are then modified to improve the agreement with the experimental results. The size prediction of the modified models together with the spray velocity characterization are used to determine the overall nebulizer efficiency and also employed as input to a new Maximum Entropy Principle (MEP) based model to predict joint size-velocity distribution analytically. The new MEP model is exploited to study the local variation of size-velocity distribution in contrast to the classical models where MEP is applied globally to the entire spray cross section. As will be demonstrated, the velocity distribution of the classical MEP models shows poor agreement with experiments for the cases under study. Modifications to the original MEP modeling are proposed to overcome this deficiency. In addition, the new joint size-velocity distribution agrees better with our general understanding of the drag law and yields realistic results.
14

The Effects of Neuromuscular Electrical Stimulation of the Submental Muscle Group on the Excitability of Corticobulbar Projections

Doeltgen, Sebastian Heinrich January 2009 (has links)
Neuromuscular electrical stimulation (NMES) has become an increasingly popular rehabilitative treatment approach for swallowing disorders (dysphagia). However, its precise effects on swallowing biomechanics and measures of swallowing neurophysiology are unclear. Clearly defined NMES treatment protocols that have been corroborated by thorough empirical research are lacking. The primary objective of this research programme was therefore to establish optimal NMES treatment parameters for the anterior hyo-mandibular (submental) musculature, a muscle group that is critically involved in the oral and pharyngeal phases of swallowing. Based on previous research, the primary hypothesis was that various NMES treatment protocols would have differential effects of either enhancing or inhibiting the excitability of corticobulbar projections to this muscle group. The research paradigm used to test this hypothesis was an evaluation of MEP amplitude and onset latency, recorded in the functional context of volitional contraction of the submental musculature (VC) and contraction of this muscle group during the pharyngeal phase of volitional swallowing (VPS, volitional pharyngeal swallow). Outcome measures were recorded before and at several time points after each NMES treatment trial. This methodology is similar to, but improved upon, research paradigms previously reported. Changes in corticobulbar excitability in response to various NMES treatment protocols were recorded in a series of experiments. Ten healthy research participants were recruited into a study that evaluated the effects of event-related NMES, whereas 15 healthy research participants were enrolled in a study that investigated the effects of non-event-related NMES. In a third cohort of 35 healthy research participants, task-dependent differences in corticobulbar excitability were evaluated during three conditions of submental muscle contraction: VC, VPS and submental muscle contraction during the pharyngeal phase of reflexive swallowing (RPS, reflexive pharyngeal swallowing). Event-related NMES induced frequency-depended changes in corticobulbar excitability. NMES administered at 80 Hz facilitated MEP amplitude, whereas NMES at 5 Hz and 20 Hz inhibited MEP amplitude. No changes were observed after NMES at 40 Hz. Maximal excitatory or inhibitory changes occurred 60 min post-treatment. Changes in MEP amplitude in response to event-related NMES were only observed when MEPs were recorded during the VC condition, whereas MEPs recorded during the VPS condition remained unaffected. Non-event-related NMES did not affect MEP amplitude in either of the muscle contraction conditions. Similarly, MEP onset latencies remained unchanged across all comparisons. MEPs were detected most consistently during the VC contraction condition. They were less frequently detected and were smaller in amplitude for the VPS condition and they were infrequently detected during pre-activation by RPS. The documented results indicate that event-related NMES has a more substantial impact on MEP amplitude than non-event-related NMES, producing excitatory and inhibitory effects. Comparison of MEPs recorded during VC, VPS and RPS suggests that different neural networks may govern the motor control of submental muscle activation during these tasks. This research programme is the first to investigate the effects of various NMES treatment protocols on the excitability of submental corticobulbar projections. It provides important new information for the use of NMES in clinical rehabilitation practices and our understanding of the neural networks governing swallowing motor control.
15

Enzymes in the Mycobacterium tuberculosis MEP and CoA Pathways Targeted for Structure-Based Drug Design

Björkelid, Christofer January 2012 (has links)
Tuberculosis, caused by the pathogenic bacteria Mycobacterium tuberculosis, is one of the most widespread and deadly infectious diseases today. Treatment of tuberculosis relies on antibiotics that were developed more than 50 years ago. These are now becoming ineffective due to the emergence of antibiotic resistant strains of the bacteria. The aim of the research in this thesis was to develop new antibiotics for tuberculosis treatment. To this end, we targeted enzymes from two essential biosynthetic pathways in M. tuberculosis for drug development. The methylerythritol phosphate (MEP) pathway synthesizes a group of compounds called isoprenoids. These compounds have essential roles in all living organisms. The fact that humans utilize a different pathway for isoprenoid synthesis makes the MEP pathway enzymes attractive targets for drug development. We have determined the structures of two essential enzymes from this pathway by X-ray crystallography: 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) and 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (IspD). These are the first structures of these enzymes from M. tuberculosis. Additionally, structures of the IspD enzyme from the related bacteria Mycobacterium smegmatis were determined. We have characterized these enzymes and evaluated the efficiency of a number of inhibitors of the DXR enzyme by biochemical methods. Crystal structures of DXR in complex with some of these inhibitors were also determined. The second pathway of interest for drug development is the universal pathway for Coenzyme A biosynthesis. Enzymes in this pathway have essential roles in all living organisms. However, the bacterial enzymes have little similarity to the human homologues. We have determined a number of structures of the M. tuberculosis pantothenate kinase (PanK), the regulatory enzyme of this pathway, in complex with two new classes of inhibitory compounds, and evaluated these by biochemical methods. The structures and biochemical characterization of these enzymes provide us with detailed information about their functions and broadens our knowledge of these bacteria. Biochemical and structural information about new inhibitors of these enzymes serve as a starting point for future development of antibiotics against tuberculosis.
16

Increases in corticospinal responsiveness during a sustained submaximal plantar flexion

Hoffman, Benjamin Unknown Date (has links)
Studying the responsiveness of specific central nervous system (CNS) pathways to electrical or magnetic stimulation can provide important information regarding fatigue processes occurring as a result of ongoing muscle activity. While there are some studies assessing CNS responsiveness during sustained maximal voluntary contractions (MVCs) few papers have examined such changes during sustained submaximal contractions, particularly in muscles of the lower limbs. The location of the underlying central fatigue process can be partially determined by assessing the responsiveness to magnetic or electrical stimulation at different sites along the CNS. This has been investigated during maximal and submaximal contractions in the upper limb muscles, however changes in corticospinal responsiveness at different CNS locations has yet to be determined during fatigue of lower limb muscles. Therefore, the focus of this study was to investigate changes in corticospinal responsiveness during a sustained submaximal contraction of the triceps surae. Comparisons were made between the size of motor evoked potentials (MEPs) elicited by motor cortical stimulation and cervicomedullary motor evoked potentials (CMEPs) elicited via magnetic stimulation of the descending tracts, in order to determine the site of any change in corticospinal responsiveness. Participants maintained an isometric contraction of triceps surae at 30% of MVC for as long as possible on two occasions. Stimulation was applied either to the motor cortex or to the cervicomedullary junction every minute during a contraction until task failure. Peripheral nerve stimulation was also applied to evoke maximal M-waves (Mmax) and a superimposed twitch. Additionally, MEPs and CMEPs were evoked during brief contractions at 80, 90 and 100% MVC as a non-fatigue control. During the sustained contractions, MEP size increased significantly in both soleus (113%; SOL) and medial gastrocnemius (108%; MG) and at endurance limit matched MEP size in the pre-fatigue MVC (≈20-25% Mmax). In contrast, CMEP size increased significantly in MG (51%) but not in SOL (63%), and at endurance limit was significantly smaller than during pre-fatigue MVC (5-6% Mmax versus 11-13% Mmax). The data indicate that cortical processes contribute substantially to the increase in corticospinal responsiveness observed during sustained submaximal contraction of triceps surae. The strength of corticospinal projections and the upper-limit of motor unit recruitment may explain differences in corticospinal responsiveness between SOL and upper arm muscles. Furthermore, differences in motor unit recruitment and firing rate may explain differences in spinal responsiveness between submaximal and maximal voluntary contractions.
17

The Effects of Neuromuscular Electrical Stimulation of the Submental Muscle Group on the Excitability of Corticobulbar Projections

Doeltgen, Sebastian Heinrich January 2009 (has links)
Neuromuscular electrical stimulation (NMES) has become an increasingly popular rehabilitative treatment approach for swallowing disorders (dysphagia). However, its precise effects on swallowing biomechanics and measures of swallowing neurophysiology are unclear. Clearly defined NMES treatment protocols that have been corroborated by thorough empirical research are lacking. The primary objective of this research programme was therefore to establish optimal NMES treatment parameters for the anterior hyo-mandibular (submental) musculature, a muscle group that is critically involved in the oral and pharyngeal phases of swallowing. Based on previous research, the primary hypothesis was that various NMES treatment protocols would have differential effects of either enhancing or inhibiting the excitability of corticobulbar projections to this muscle group. The research paradigm used to test this hypothesis was an evaluation of MEP amplitude and onset latency, recorded in the functional context of volitional contraction of the submental musculature (VC) and contraction of this muscle group during the pharyngeal phase of volitional swallowing (VPS, volitional pharyngeal swallow). Outcome measures were recorded before and at several time points after each NMES treatment trial. This methodology is similar to, but improved upon, research paradigms previously reported. Changes in corticobulbar excitability in response to various NMES treatment protocols were recorded in a series of experiments. Ten healthy research participants were recruited into a study that evaluated the effects of event-related NMES, whereas 15 healthy research participants were enrolled in a study that investigated the effects of non-event-related NMES. In a third cohort of 35 healthy research participants, task-dependent differences in corticobulbar excitability were evaluated during three conditions of submental muscle contraction: VC, VPS and submental muscle contraction during the pharyngeal phase of reflexive swallowing (RPS, reflexive pharyngeal swallowing). Event-related NMES induced frequency-depended changes in corticobulbar excitability. NMES administered at 80 Hz facilitated MEP amplitude, whereas NMES at 5 Hz and 20 Hz inhibited MEP amplitude. No changes were observed after NMES at 40 Hz. Maximal excitatory or inhibitory changes occurred 60 min post-treatment. Changes in MEP amplitude in response to event-related NMES were only observed when MEPs were recorded during the VC condition, whereas MEPs recorded during the VPS condition remained unaffected. Non-event-related NMES did not affect MEP amplitude in either of the muscle contraction conditions. Similarly, MEP onset latencies remained unchanged across all comparisons. MEPs were detected most consistently during the VC contraction condition. They were less frequently detected and were smaller in amplitude for the VPS condition and they were infrequently detected during pre-activation by RPS. The documented results indicate that event-related NMES has a more substantial impact on MEP amplitude than non-event-related NMES, producing excitatory and inhibitory effects. Comparison of MEPs recorded during VC, VPS and RPS suggests that different neural networks may govern the motor control of submental muscle activation during these tasks. This research programme is the first to investigate the effects of various NMES treatment protocols on the excitability of submental corticobulbar projections. It provides important new information for the use of NMES in clinical rehabilitation practices and our understanding of the neural networks governing swallowing motor control.
18

Les transporteurs d'ammonium Mep/Amt/Rh de la levure Saccharomyces cerevisiae: fonctions et régulations

Boeckstaens, Mélanie 04 October 2007 (has links)
Les protéines de la famille Mep/Amt/Rh sont largement conservées dans l’évolution. Cette famille comprend les facteurs Rhésus dont les antigènes Rh humains sont les membres les plus notoires. Le rôle des protéines de type Mep/Amt/Rh en tant que transporteurs d’ammonium a largement été décrit chez les bactéries, les champignons et les plantes. Néanmoins, leur mécanisme de fonctionnement demeure élusif et la régulation de leur activité a été peu abordée chez les organismes eucaryotes. En utilisant comme modèles de la famille Mep/Amt/Rh les trois transporteurs d’ammonium de la levure Saccharomyces cerevisiae, nous avons tenté de comprendre les mécanismes de fonctionnement et de régulation de cette famille de protéines membranaires.<p>Nous montrons qu’un résidu aspartate, conservé dans la famille Mep/Amt/Rh et situé à proximité d’un vestibule cation-attractif, joue un rôle structural dans la reconnaissance de l’ammonium chez le transporteur Mep2. De plus, un résidu histidine très conservé dans le pore hydrophobe des protéines Mep/Amt/Rh est substitué par un aspartate chez un sous-groupe de transporteurs d’ammonium fongiques. Cette substitution permet de définir deux sous-familles fonctionnelles possédant des propriétés bien distinctes.<p>Nous montrons également que la kinase Npr1 intervient dans la modulation de l’activité intrinsèque des trois protéines Mep qui demeurent inactives mais stables à la membrane plasmique en absence de la kinase. <p>Hormis leur rôle dans le transport d’ammonium en tant que source d’azote, nous montrons que l’activité des protéines Mep est requise pour différentes réponses physiologiques. Une diminution d’entrée d’ammonium en absence des protéines Mep ou de leur régulateur positif Npr1 entraîne une dérépression des gènes soumis à la répression catabolique azotée ainsi qu’un défaut dans le repompage de l’ammonium catabolique excrété durant la croissance en présence d’autres sources azotées. Un rôle supplémentaire de senseur d’ammonium avait été attribué au transporteur Mep2 dans l’induction de la croissance filamenteuse en réponse à une limitation en ammonium. Nous montrons que l’état d’activité de la protéine Mep2 est étroitement lié à sa capacité à induire le développement filamenteux. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
19

Incorporating mechanical, electrical and plumbing systems into historic preservation projects - three case studies

Terry, Jason January 1900 (has links)
Master of Science / Department of Architectural Engineering and Construction Science / Sutton F. Stephens / Architectural engineers face many challenges in the design and implementation of mechanical, electrical, lighting, plumbing, and fire protection systems in buildings. Space and aesthetic coordination must be managed between the architects, engineers, contractors, and building owners. Further design issues are involved when renovating or preserving historic properties. Historic buildings often contain additional design limitations and character defining features that must be preserved. A building's character defining features often represent past history, culture, and architecture. To better understand the design coordination and other issues faced in historic renovation, three case studies located in Kansas City, Missouri, are presented to investigate the application of mechanical, electrical, and plumbing (MEP) system design into historic buildings. The three case studies include: the Stowers Institute for Medical Research, as a mechanical design; the Union Station, as an electrical and lighting design; and the Webster House, as a plumbing and fire protection design. The renovation projects' architects, engineers, and contractors were personally interviewed to obtain the most accurate information and account of the design and construction process. Additional information was gathered, and a tour of each building allowed for the pictorial documentation of each site. Preserving the historic character of buildings during renovations has many advantages and disadvantages for both the owners and the designers. The additional design parameters in historic renovation projects foster creative thinking and problem solving during the design and construction process. In order to implement a successful design, the architects, engineers, and contractors must work together and understand the value of a building's historic character during the design stage when adapting to a new usage.
20

Structure, function and regulation of ammonium transport proteins of the Mep-Amt-Rh superfamily in the yeast Saccharomyces cerevisiae

Soto Diaz, Silvia 28 October 2020 (has links) (PDF)
While ammonium is an excellent nitrogen source for microorganisms and plants, it is known as acytotoxic metabolite and for its critical role in acid/base homeostasis in animals. Ammonium transportinside the cells is ensured by proteins of the Mep-Amt-Rh superfamily, which are conserved frombacteria to humans.The main objective of the thesis is to refine the understanding of the regulation of the three ammoniumtransport proteins Mep1, Mep2 and Mep3 from Saccharomyces cerevisiae. The three Mep proteins areregulated by the Npr1 kinase and the conserved TORC1 signaling pathway. While the activity of Mep2is regulated by phosphorylation of the C-terminal 457 serine, the activity of Mep1 and Mep3 is inhibitedby the factor Amu1 / Par32. In the presence of a poor nitrogen source, Npr1 induces phosphorylation ofAmu1 which appears mainly cytosolic and, Mep1 and Mep3 are active. On the other hand, in thepresence of a good nitrogen source, the activity of TORC1 induces the inhibition of Npr1 and thereforethe dephosphorylation of Amu1 which accumulates at the cell surface and inactivates Mep1 and Mep3.In order to further study the regulation of Mep1 / 3, a genetic screen was performed to isolate suppressorsrecovering Mep1-dependent ammonium transport in the absence of Npr1. Several mutations, insertionsand deletions have been identified in the MEP1 and AMU1 genes allowing Mep1 to be activeindependently of Npr1. This work shows that all the point mutations in Mep1 delimit an area at theinterface between the hydrophobic body of Mep1 and the cytosol, and that part of the C-terminus (CTR)is required for optimal activity of Mep1 but appears dispensable for regulation by Amu1 and Npr1. Thegenetic screen also shows that the last 15 amino acids of Amu1 are required to inactivate Mep1. Finally,the isolation of suppressors showing no mutation in MEP1 and AMU1 could reveal new factors involvedin the control of Mep1.The results indicate that Mep1 is inactivated in the presence of glutamine, a good source of nitrogen,and that this inactivation requires Amu1. The glutamine-dependent inactivation of Mep2 was alsostudied in this manuscript. Mass spectrometry analysis revealed putative phosphorylation sites in CTRspecific to the presence or absence of glutamine.This work also addressed the role of Amu1 in the reactivation function of TORC1 after treatment withrapamycin, in particular by confirming that it requires the function of Mep1/3. The study leads to thehypothesis that the transport mechanism specific to Mep1 and Mep3 and different from Mep2 isinvolved in this function.Finally, in order to better understand the mechanisms of regulation and transport of Mep-Amt-Rhproteins, the experimental determination of the three-dimensional structure of different variants ofMep2, in open or closed conformation, and of Mep1 was undertaken. Throughout this work, thecharacterized Mep1 or Mep2 variants were analyzed in silico by using the available three-dimensionalstructures. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.0352 seconds