Spelling suggestions: "subject:"mesh."" "subject:"esh.""
491 |
Achieving Fairness in 802.11-Based Multi-channel Wireless Mesh NetworksLee, Ann January 2006 (has links)
Multi-hop wireless networks based on 802. 11 are being used more widely as an alternative technology for last-mile broadband Internet access. Their benefits include ease of deployment and lower cost. Such networks are not without problems. Current research on such networks aims at a number of challenges, including overcoming capacity limitation and poor fairness. <br /><br /> The focus of our research is for achieving fairness in multi-channel multi-hop wireless networks. First, we review the literature for different methods for representing link-contention areas, and the existing single-channel fairness computational model. Second, we generalize the fairness constraints applied to each link-contention area, defined in the existing single-channel fairness reference model, to multi-channel models. Third, by adopting the concepts of link-usage matrix and medium-usage matrix to represent network topology and flow status, and using Collision Domain theory and Clique Graph theory to represent link-contention area, we develop a computational model to compute optimal MAC-layer bandwidth allocated to each flow in a multi-channel multi-hop WMN. We simulate various network configurations to evaluate the performance of the fairness algorithm based on the above computational model in different scenarios. We have found that in the multi-channel environment, our extension to the Collision Domain model generally provides a more accurate estimation of network capacity. Based on this model, we have extended the source-rate-limiting mechanism, which limits the flow rate to its fair share computed by the computational model. Experimental results that validate these findings are presented in this thesis.
|
492 |
Design of High Throughput Wireless Mesh NetworksMuthaiah, Skanda Nagaraja 28 September 2007 (has links)
Wireless Mesh Networks are increasingly becoming popular as low cost alternatives to
wired networks for providing broadband access to users (the last mile connectivity). A
key challenge in deploying wireless mesh networks is designing networks with sufficient capacity to meet user demands. Accordingly, researchers have explored various schemes in an effort to build high throughput mesh networks. One of the key technologies that is often employed by researchers to build high throughput wireless mesh networks (WMN) is equipping nodes with smart antennas. By exploiting the advantages of reduced interference and longer transmission paths, smart antennas have been shown to significantly
increase network throughput in WMN. However, there is a need to identify and establish
an upper-bound on the maximum throughput that is achievable by using smart antennas
equipped WMN. Such a bound on throughput is important for several reasons, the most
important of which is identifying the services that can be supported by these technologies.
This thesis begins with a focus on establishing this bound.
Clearly, it is evident that smart-antennas cannot increase network throughput beyond
a certain limit for various reasons including the limitations imposed by existing smart an-
tenna technology itself. However with the spiralling demand for broadband access, schemes
must be explored that can increase network throughput beyond the limit imposed by smart
antennas. An interesting and robust method to achieve this increased throughput is by en-
abling multiple gateways within the network. Since, the position of these gateways within
the network bears a significant influence on network performance, techniques to “opti-
mally” place these gateways within the network must be evolved. The study of multiple
gateway placement in multi-hop mesh networks forms the next focus of this study.
This thesis ends with a discussion on further work that is necessary in this domain.
|
493 |
QoS Routing in Wireless Mesh NetworksAbdelkader, Tamer Ahmed Mostafa Mohammed January 2008 (has links)
Wireless Mesh Networking is envisioned as an economically viable paradigm and a promising technology in providing wireless broadband services. The wireless mesh backbone consists of fixed mesh routers that interconnect different mesh clients to themselves and to the wireline backbone network. In order to approach the wireline servicing level and provide same or near QoS guarantees to different traffic flows, the wireless mesh backbone should be quality-of-service (QoS) aware. A key factor in designing protocols for a wireless mesh network (WMN) is to exploit its distinct characteristics, mainly immobility of mesh routers and less-constrained power consumption.
In this work, we study the effect of varying the transmission power to achieve the required signal-to-interference noise ratio for each link and, at the same time, to maximize the number of simultaneously active links. We propose a QoS-aware routing framework by using transmission power control. The framework addresses both the link scheduling and QoS routing problems with a cross-layer design taking into consideration the spatial reuse of the network bandwidth. We formulate an optimization problem to find the optimal link schedule and use it as a fitness function in a genetic algorithm to find candidate routes. Using computer simulations, we show that by optimal power allocation the QoS constraints for the different traffic flows are met with more efficient bandwidth utilization than the minimum power allocations.
|
494 |
Radio Resource Management for Wireless Mesh Networks Supporting Heterogeneous TrafficCheng, Ho Ting January 2009 (has links)
Wireless mesh networking has emerged as a promising technology for future broadband wireless access, providing a viable and economical solution for both peer-to-peer applications and Internet access. The success of wireless mesh networks (WMNs) is highly contingent on effective radio resource management. In conventional wireless networks, system throughput is usually a common performance metric. However, next-generation broadband wireless access networks including WMNs are anticipated to support multimedia traffic (e.g., voice, video, and data traffic). With heterogeneous traffic, quality-of-service (QoS) provisioning and fairness support are also imperative. Recently, wireless mesh networking for suburban/rural residential areas has been attracting a plethora of attentions from industry and academia. With austere suburban and rural networking environments, multi-hop communications with decentralized resource allocation are preferred. In WMNs without powerful centralized control, simple yet effective resource allocation approaches are desired for the sake of system performance melioration. In this dissertation, we conduct a comprehensive research study on the topic of radio resource management for WMNs supporting multimedia traffic. In specific, this dissertation is intended to shed light on how to effectively and efficiently manage a WMN for suburban/rural residential areas, provide users with high-speed wireless access, support the QoS of multimedia applications, and improve spectrum utilization by means of novel radio resource allocation. As such, five important resource allocation problems for WMNs are addressed, and our research accomplishments are briefly outlined as follows:
Firstly, we propose a novel node clustering algorithm with effective subcarrier allocation for WMNs. The proposed node clustering algorithm is QoS-aware, and the subcarrier allocation is optimality-driven and can be performed in a decentralized manner. Simulation results show that, compared to a conventional conflict-graph approach, our proposed approach effectively fosters frequency reuse, thereby improving system performance;
Secondly, we propose three approaches for joint power-frequency-time resource allocation. Simulation results show that all of the proposed approaches are effective in provisioning packet-level QoS over their conventional resource allocation counterparts. Our proposed approaches are of low complexity, leading to preferred candidates for practical implementation;
Thirdly, to further enhance system performance, we propose two low-complexity node cooperative resource allocation approaches for WMNs with partner selection/allocation. Simulation results show that, with beneficial node cooperation, both proposed approaches are promising in supporting QoS and elevating system throughput over their non-cooperative counterparts;
Fourthly, to further utilize the temporarily available radio spectrum, we propose a simple channel sensing order for unlicensed secondary users. By sensing the channels according to the descending order of their achievable rates, we prove that a secondary user should stop at the first sensed free channel for the sake of optimality; and
Lastly, we derive a unified optimization framework to effectively attain different degrees of performance tradeoff between throughput and fairness with QoS support. By introducing a bargaining floor, the optimal tradeoff curve between system throughput and fairness can be obtained by solving the proposed optimization problem iteratively.
|
495 |
Centralized Rate Allocation and Control in 802.11-based Wireless Mesh NetworksJamshaid, Kamran January 2010 (has links)
Wireless Mesh Networks (WMNs) built with commodity 802.11 radios are a cost-effective means of providing last mile broadband Internet access. Their multihop architecture allows for rapid deployment and organic growth of these networks.
802.11 radios are an important building block in WMNs. These low cost radios are readily available, and can be used globally in license-exempt frequency bands. However, the 802.11 Distributed Coordination Function (DCF) medium access mechanism does not scale well in large multihop networks. This produces suboptimal behavior in many transport protocols, including TCP, the dominant transport protocol in the Internet. In particular, cross-layer interaction between DCF and TCP results in flow level unfairness, including starvation, with backlogged traffic sources. Solutions found in the literature propose distributed source rate control algorithms to alleviate this problem. However, this requires MAC-layer or transport-layer changes on all mesh routers. This is often infeasible in practical deployments.
In wireline networks, router-assisted rate control techniques have been proposed for use alongside end-to-end mechanisms. We evaluate the feasibility of establishing similar centralized control via gateway mesh routers in WMNs. We find that commonly used router-assisted flow control schemes designed for wired networks fail in WMNs. This is because they assume that: (1) links can be scheduled independently, and (2) router queue buildups are sufficient for detecting congestion. These abstractions do not hold in a wireless network, rendering wired scheduling algorithms such as Fair Queueing (and its variants) and Active Queue Management (AQM) techniques ineffective as a gateway-enforceable solution in a WMN. We show that only non-work-conserving rate-based scheduling can effectively enforce rate allocation via a single centralized traffic-aggregation point.
In this context we propose, design, and evaluate a framework of centralized, measurement-based, feedback-driven mechanisms that can enforce a rate allocation policy objective for adaptive traffic streams in a WMN. In this dissertation we focus on fair rate allocation requirements. Our approach does not require any changes to individual mesh routers. Further, it uses existing data traffic as capacity probes, thus incurring a zero control traffic overhead. We propose two mechanisms based on this approach: aggregate rate control (ARC) and per-flow rate control (PFRC). ARC limits the aggregate capacity of a network to the sum of fair rates for a given set of flows. We show that the resulting rate allocation achieved by DCF is approximately max-min fair. PFRC allows us to exercise finer-grained control over the rate allocation process. We show how it can be used to achieve weighted flow rate fairness. We evaluate the performance of these mechanisms using simulations as well as implementation on a multihop wireless testbed. Our comparative analysis show that our mechanisms improve fairness indices by a factor of 2 to 3 when compared with networks without any rate limiting, and are approximately equivalent to results achieved with distributed source rate limiting mechanisms that require software modifications on all mesh routers.
|
496 |
Numerical simulation of flow induced vibration of the staggered cylinder arrays in shear flowChen, Yi-Hung 19 August 2011 (has links)
The present study aims to explore dynamical behavior of the single cylinder and the staggered cylinder arrays in shear flow by numerical simulations. The results are compared with the case in uniform flow. After the observation of the fluid-elastic vibration in the staggered cylinder arrays in the two flows. This paper investigates the effects of the spacing(P/D), mass ratio and the shear parameter on the trajectories, oscillation amplitudes among the different cylinders.
Continuity equation and momentum equations are used to solve the aforementioned problems alternatively by PISO method. Dynamic meshing techniques together with the cylinder motion equations are employed in the simulation. Under the different conditions, flow types and cylinder motion models, lock-in and fluid-elastic vibration are studied when the flow crosses the staggered cylinder arrays.
The results show that the motion and the flow field around the single cylinder is consistent with the literature. In terms of the staggered cylinder arrays in uniform flow, the oscillation is dominated by the vortex shedding, and the lock-in area in the downstream cylinders is greater than the upstream cylinders. Fluid elastic vibration occurs in the small spacing between cylinders. In shear flow, when the shear parameters are larger or the spacing between cylinders are smaller, the more likely the fluid elastic vibration of the cylinders will occur.
|
497 |
Measurements of Drag Torque and Lift Off Speed and Identification of Stiffness and Damping in a Metal Mesh Foil BearingChirathadam, Thomas A. 2009 December 1900 (has links)
Metal mesh foil bearings (MMFBs) are a promising low cost gas bearing technology
for support of high speed oil-free microturbomachinery. Elimination of complex oil
lubrication and sealing system by installing MMFBs in oil free rotating machinery offer
distinctive advantages such as reduced system overall weight, enhanced reliability at
high rotational speeds and extreme temperatures, and extended maintenance intervals
compared to conventional turbo machines. MMFBs for oil-free turbomachinery must
demonstrate adequate load capacity, reliable rotordynamic performance, and low
frictional losses in a high temperature environment.
The thesis presents the measurements of MMFB break-away torque, rotor lift off and
touchdown speeds, temperature at increasing static load conditions, and identified
stiffness and equivalent viscous damping coefficients. The experiments, conducted in a
test rig driven by an automotive turbocharger turbine, demonstrate the airborne operation
(hydrodynamic gas film) of the floating test MMFB with little frictional loses at
increasing loads. The measured drag torque peaks when the rotor starts and stops, and
drops significantly once the bearing is airborne. The estimated rotor speed for lift-off
increases linearly with increasing applied loads. During continuous operation, the
MMFB temperature measured at one end of the back surface of the top foil increases
both with rotor speed and static load. Nonetheless, the temperature rise is only nominal
ensuring reliable bearing performance. Application of a sacrificial layer of solid
lubricant on the top foil surface aids to reduce the rotor break-away torque. The
measurements give confidence on this simple bearing technology for ready application
into oil-free turbomachinery.
Impact loads delivered (with a soft tip) to the test bearing, while resting on the
(stationary) drive shaft, evidence a system with large damping and a structural stiffness
that increases with frequency (max. 200 Hz). The system equivalent viscous damping
ratio decreases from ~ 0.7 to 0.2 as the frequency increases. In general, the viscous
damping in a metal mesh structure is of structural type and inversely proportional to the
frequency and amplitude of bearing motion relative to the shaft. Impact load tests,
conducted while the shaft rotates at 50 krpm, show that the bearing direct stiffness is
lower (~25% at 200 Hz) than the bearing structural stiffness identified from impact load
tests without shaft rotation. However, the identified equivalent viscous damping
coefficients from tests with and without shaft rotation are nearly identical.
The orbits of bearing motion relative to the rotating shaft show subsynchronous
motion amplitudes and also backward synchronous whirl. The subsynchronous vibration
amplitudes are locked at a frequency, nearly identical to a rotor natural frequency. A
backward synchronous whirl occurs while the rotor speed is between any two natural
frequencies, arising due to bearing stiffness asymmetry.
|
498 |
Experimental Analysis of the Effect of Vibrational Non-Equilibrium on the Decay of Grid-Generated TurbulenceFuller, T. J. 2009 August 1900 (has links)
The technical feasibility of hypersonic flight (i.e., re-entry, hypersonic flight vehicles, cruise missiles, etc.) hinges on our ability to understand, predict, and control the transport of turbulence in the presence of non-equilibrium effects. A theoretical analysis of the governing equations suggests a mechanism by which fluctuations in internal energy are coupled to the transport of turbulence. Numerical studies of these flows have been conducted, but limited computational power results in reduced fidelity. Experimental studies are exceedingly rare and, consequently, experimental data available to build and evaluate turbulence models is nearly non-existent.
The Decaying Mesh Turbulence (DMT) facility was designed and constructed to generate a fundamental decaying mesh turbulent flow field with passive grids. Vibrational non-equilibrium was achieved via a capacitively-coupled radio-frequency (RF) plasma discharge which required an operating pressure of 30 Torr. The flow velocity was 30 m/s. Data was recorded with each grid at multiple plasma powers (Off, 150 W, and 300 W). Over two terabytes of highly resolved (3,450 image pairs) two-dimensional particle image velocimetry (PIV) was acquired and archived. Temperature measurements were carried out using coherent anti-Stokes Raman spectroscopy (CARS).
The primary objective of this study was to answer the fundamental scientific question: "Does thermal non-equilibrium alter the decay rate of turbulence?" The results of this study show that the answer is "Yes." The results demonstrate a clear coupling between thermal non-equilibrium and turbulence transport. The trends observed agree with those expected based on an analysis of the Reynolds stress transport equations, which provides confidence in transport equation-based modeling. A non-trivial reduction (~30%) in the decay rate downstream of the 300 W plasma discharge was observed. The data also show that the decay of TKE downstream of the plasma discharge was delayed (~20% downstream shift). In addition, the thermal non-equilbrium was observed to have no effect on the transverse stress. This suggests that, for this flow, the energy dilatation terms are small and unaffected by the plasma discharge, which simplifies modeling.
|
499 |
Circuit Optimization Using Efficient Parallel Pattern SearchNarasimhan, Srinath S. 2010 May 1900 (has links)
Circuit optimization is extremely important in order to design today's high performance integrated circuits. As systems become more and more complex, traditional optimization techniques are no longer viable due to the complex and simulation intensive nature of the optimization problem. Two examples of such problems include clock mesh skew reduction and optimization of large analog systems, for example Phase locked loops. Mesh-based clock distribution has been employed in many high-performance microprocessor designs due to its favorable properties such as low clock skew and robustness. However, such clock distributions can become quite complex and may consist of hundreds of nonlinear drivers strongly coupled via a large passive network. While the simulation of clock meshes is already very time consuming, tuning such networks under tight performance constraints is an even daunting task. Same is the case with the phase locked loop. Being composed of multiple individual analog blocks, it is an extremely challenging task to optimize the entire system considering all block level trade-offs.
In this work, we address these two challenging optimization problems i.e.; clock mesh skew optimization and PLL locking time reduction. The expensive objective function evaluations and difficulty in getting explicit sensitivity information make these problems intractable to standard optimization methods. We propose to explore the recently developed asynchronous parallel pattern search (APPS) method for efficient driver size tuning. While being a search-based method, APPS not only provides the desirable derivative-free optimization capability, but also is amenable to parallelization and possesses appealing theoretically rigorous convergence properties.
In this work it is shown how such a method can lead to powerful parallel optimization of these complex problems with significant runtime and quality advantages over the traditional sequential quadratic programming (SQP) method. It is also shown how design-specific properties and speeding-up techniques can be exploited to make the optimization even more efficient while maintaining the convergence of APPS in a practical sense. In addition, the optimization technique is further enhanced by introducing the feature to handle non-linear constraints through the use of penalty functions. The enhanced method is used for optimizing phase locked loops at the system level.
|
500 |
Tissue Engineering Approaches for the Treatment of Knee Joint DamageMcMahon, Rebecca Erin 2011 May 1900 (has links)
There are more than 150,000 anterior cruciate ligament reconstructions each year with the goal of recovering the balance between knee stability and mobility. As many as 25 percent of these procedures will end in joint instability that can cause further damage. The risk of developing degenerative joint disease (DJD) increases in patients with previous knee injury, resulting in a higher instance of total knee arthroplasty (TKA).
There are more than 400,000 TKA procedures each year, but the waiting lists for this surgery shows that many more patients are hoping to undergo this procedure. TKA provides improved knee function and pain relief for patients suffering from DJD. Although this procedure is considered successful, as younger patients undergo this treatment, the long-term performance must be improved. Major mechanisms of failure include component loosening from stress-shielding, poor integration of the implant with native tissue, and ion release from the implant. TiNb alloys are more biocompatible than currently used alloys, such as NiTi, and have mechanical properties closer to bone, so they would reduce the instance of stress shielding. TiNb can be made porous for better integration with the native bone and has superior corrosion resistance than NiTi.
Engineered ligaments have generally failed to achieve mechanical properties sufficiently similar to their native counterparts, but also lack the osteochondral interface critical to the transfer of load between ligament and bone. The osteochondral interface could be incorporated through a gradient of inorganic content toward the bony insertion ends of the ligament graft, as we showed that in increase of inorganic content resulted in the transdifferentiation of osteoblasts toward chondrocyte-like cells (bone to cartilage-like).
A composite scaffold composed of an electrospun mesh with either a hydrogel component or extracellular matrix (ECM) produced by the cells may be a suitable tissue engineered ligament graft. The non-linear stress-strain behavior seen in native ligament is exhibited by both of these systems, and the ECM produced by these systems is consistent with ligament tissue. The ECM-electrospun mesh composite exhibited higher elastic modulus than the fibrin-electrospun mesh composite, but required extensive pre culture while the fibrin-electrospun mesh composite could be fabricated in situ.
|
Page generated in 0.0422 seconds