• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 8
  • 8
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement de télémètres laser de haute exactitude et de haute résolution pour applications spatiales

Courde, Clément 01 February 2011 (has links) (PDF)
Si les performances des instruments d'exploration de l'Univers continuent de s'améliorer, c'est souvent au prix d'une augmentation de leurs dimensions. Pour le développement de nouveaux télescopes spatiaux, le vol en formation de satellites est une solution technique de plus en plus envisagée. La mesure absolue des distances entre satellites avec une exactitude de l'ordre de quelques dizaines de microns est alors une nécessité pour l'exploitation des données obtenues avec de tels systèmes. Elle est aussi au cœur d'expériences de physique fondamentale. Mon travail de thèse a porté sur le développement de deux télémètres, T2M et Iliade pouvant répondre à ces besoins. La difficulté dans le développement de ces deux systèmes est de concilier un grand intervalle de mesure de distances avec une grande sensibilité tout en gardant une certaine simplicité et ainsi permettre que ces instruments puissent être embarqués. La performance visée est une mesure de distance de l'ordre du kilomètre exacte à mieux d'un micron. La différence entre T2M et Iliade réside dans leurs conceptions mais aussi dans leurs complexités et les performances visées en termes de résolution. Le télémètre T2M exploite la différence de phase d'une onde modulée en amplitude séparée entre une voie de mesure et une voie de référence. La résolution visée avec ce système est la dizaine de nanomètres. Ce système est capable d'atteindre une grande exactitude du fait que la mesure de distance est déduite d'une mesure de fréquence. Les problèmes d'erreurs cycliques inhérentes à l'utilisation de ce type de techniques sont éliminés par un système d'aiguillage optique permettant d'échanger les faisceaux propres aux deux voies de télémétrie en regard des deux voies de détection. Après la stabilisation du battement de fréquences des deux lasers, mon travail a porté sur l'amélioration de la résolution et sur l'élimination des diverses sources d'erreurs affectant l'exactitude. Les objectifs fixés semblent être atteints et les résultats obtenus sont très encourageants pour les futurs tests et développements à réaliser. Le télémètre Iliade combine une mesure de temps de vol d'impulsions laser et une mesure interférométrique à deux longueurs d'onde. Au prix d'une sophistication un peu plus importante que T2M, la résolution visée est inférieure au nanomètre. La caractérisation de la source d'impulsions d'Iliade présentant un taux de répétition de 20 GHz, a permis de montrer que la gigue temporelle de 65 fs à sa sortie est principalement due au bruit de phase du battement initial de deux lasers monomodes. J'ai travaillé sur une cavité Fabry Perot fibrée pour pré-stabiliser le rayonnement d'un laser monomode. J'ai démontré une technique permettant d'obtenir un signal d'erreur de type dispersif, sans recourir à une modulation. Enfin j'ai étudié une méthode numérique basée sur l'analyse harmonique permettant d'assurer une mesure de différence de phase avec une exactitude de 10-5 radian. Le télémètre Iliade est actuellement en cours de développement.
2

Conception et mise en oeuvre d'un télémètre à très haute exactitude pour application aux missions spatiales de vol en formation et à la caractérisation des grandes installations

Phung, Duy-Hà 25 June 2013 (has links) (PDF)
Au-delà de son utilisation en géophysique ou en métrologie à grande échelle, la télémétrie laser des longues distances devrait trouver de nombreuses applications pour les missions spatiales. Les instruments d'observation par synthèse ouverture en vols en formation demandent que la géométrie de la constellation soit connue et contrôlée à bien mieux que la longueur d'onde de la fenêtre d'observation. Pour répondre à ces besoins, nous avons étudié un nouveau schéma de mesure qui combine une mesure interférométrique, réalisée sur un faisceau à deux modes et une mesure de temps de vols. Mon travail de thèse a porté sur la conception, mise en œuvre et la caractérisation de la mesure interférométrique. Pour qu'elles ne soient pas affectées par les dérives lentes de l'instrumentation microonde, les deux mesures de phase de longueur d'onde optique (1.55 µm) et de longueur d'onde synthétique (15 mm) sont extraites d'un même signal d'interférence à deux modes en utilisant une procédure de mesure dédiée : on réalise des mesures du signal d'interférence à trois valeurs de la fréquence optique de la source, calculées d'après le résultat de la mesure de temps de vol. Le télémètre met à profit les propriétés du signal d'interférence à deux modes et exploite la phase et l'amplitude du signal à 20 GHz de façon à éliminer les dérives de phase à long terme du signal microonde dans les chaînes de mesure. On peut en attendre, en moins de 0.1 s, une mesure de résolution et d'exactitude inférieures au nanomètre. Le montage expérimental a permis de montrer que le principe de mesure est correct. Sur la mesure d'un chemin optique dans l'air, nous avons obtenu une résolution de 100 pm à 100 µs, qui nous permet d'observer le bruit acoustique. Le bruit sur la mesure des signaux permet d'espérer une résolution de à 10 pm à 43 ms. Les imperfections optiques du montage ont été mises en évidence: elles ont été décrites par une expression analytique, puis à l'aide d'optiques dédiées réduites au niveau nécessaire pour le fonctionnement de l'instrument. La phase des signaux de battement à 20 GHz est affectée d'erreurs de plusieurs 10-3 cycles qui, si elles ne sont pas corrigées, provoquent des erreurs de la mesure de longueur par une ou plusieurs fois la longueur d'onde optique. Nous avons réalisé une étude spécifique du couplage amplitude-phase à l'origine de cette déformation, et montré qu'il est en partie d'origine thermique, lié à la puissance de plusieurs kW/cm² dissipée dans les photodiodes à 20 GHz. Cet effet, voisin de ce qui est connu depuis quelques années en instrumentation microonde sous le nom d' "effet mémoire", est difficile à prendre en compte et la correction qui est faite sur les données ne parvient pas totalement à éviter que le télémètre délivre des valeurs erronées de la distance. En conclusion de ce mémoire deux options sont présentées afin de remédier à cette déformation du signal et d'aboutir à un instrument de haute exactitude.
3

Optique adaptative appliquée aux télécommunications laser en espace libre

Bierent, Rudolph 28 November 2012 (has links)
Les télécommunications laser en espace libre sont limitées en portée par la turbulence atmosphérique. L'optique adaptative, par la correction de la phase turbulente à l'émission du faisceau, a permis d'étendre leur domaine d'exploitation.Toutefois, sur de longues distances de propagation, cette correction n'est plus suffisante et il faut également précompenser l'amplitude du faisceau émis. De premières études numériques ont montré que le principe de retournement temporel, ou plus exactement de conjugaison de phase bidirectionnelle itérative, conduirait à des conditions satisfaisantes de focalisation du faisceau laser en fort régime de turbulence.Le principe de conjugaison de phase n'ayant été étudié que théoriquement jusque-là, mon travail de thèse s'est attaché à mettre en oeuvre un démonstrateur expérimental pour quantifier les performances de cette technique dans des conditions maîtrisées. En parallèle, une simulation de bout en bout de l'expérience a permis d'évaluer l'influence d'erreurs d'étalonnage sur les performances finales de la correction et de valider les résultats expérimentaux obtenus. Les points durs de la mise en oeuvre d'un système de télécommunications laser en espace libre ont ainsi été identifiés.L'ensemble de ces travaux constitue la toute première démonstration expérimentale du principe de retournement temporel optique. D'autres domaines d'application comme les lasers de puissance ou la propagation à travers des milieux biologiques très diffusants, nécessitant également de corriger le faisceau à l'émission, sont concernés. / Free Space Optical communications (FSO) are range limited due to atmospheric turbulence. Adaptive optics can mitigate turbulence effects by adding a phase modulation on the emitted laser beam. However, both phase and amplitude modulation are needed to perform long range FSO. Previous numerical studies have shown that iterative phase conjugation is an efficient modulation technique for lasercom systems.This PhD thesis is dedicated to the development and the realization of the first experimental demonstration of the iterative phase conjugation principle in a controlled turbulence environment. An optical bench, representative of a long range propagation through strong turbulence, has been scaled down to few-meters propagation in visible.Several methods for complex field measurement and modulation are numerically studied. Selected methods are implemented and tested, such as a novel focal plane technique for complex field measurement. Finally, iterative phase conjugation is performed and results cross-correlated with an end-to-end model representative of the optical bench.This work is the first experimental demonstration of the optical phase conjugation principle. Applications can be found in other fields than lasercoms, such as high power lasers or propagation through highly diffusing biological tissues, both in need of laser emission modulation.
4

Conception et mise en oeuvre d'un télémètre à très haute exactitude pour application aux missions spatiales de vol en formation et à la caractérisation des grandes installations / Design and implementation of a very high accuracy rangefinder for application to formation flight space missions and to the characterization of large installations

Phung, Duy-Hà 25 June 2013 (has links)
Au-delà de son utilisation en géophysique ou en métrologie à grande échelle, la télémétrie laser des longues distances devrait trouver de nombreuses applications pour les missions spatiales. Les instruments d'observation par synthèse ouverture en vols en formation demandent que la géométrie de la constellation soit connue et contrôlée à bien mieux que la longueur d’onde de la fenêtre d’observation. Pour répondre à ces besoins, nous avons étudié un nouveau schéma de mesure qui combine une mesure interférométrique, réalisée sur un faisceau à deux modes et une mesure de temps de vols. Mon travail de thèse a porté sur la conception, mise en œuvre et la caractérisation de la mesure interférométrique. Pour qu'elles ne soient pas affectées par les dérives lentes de l'instrumentation microonde, les deux mesures de phase de longueur d’onde optique (1.55 µm) et de longueur d’onde synthétique (15 mm) sont extraites d'un même signal d’interférence à deux modes en utilisant une procédure de mesure dédiée : on réalise des mesures du signal d’interférence à trois valeurs de la fréquence optique de la source, calculées d'après le résultat de la mesure de temps de vol. Le télémètre met à profit les propriétés du signal d'interférence à deux modes et exploite la phase et l'amplitude du signal à 20 GHz de façon à éliminer les dérives de phase à long terme du signal microonde dans les chaînes de mesure. On peut en attendre, en moins de 0.1 s, une mesure de résolution et d'exactitude inférieures au nanomètre. Le montage expérimental a permis de montrer que le principe de mesure est correct. Sur la mesure d’un chemin optique dans l'air, nous avons obtenu une résolution de 100 pm à 100 µs, qui nous permet d'observer le bruit acoustique. Le bruit sur la mesure des signaux permet d'espérer une résolution de à 10 pm à 43 ms. Les imperfections optiques du montage ont été mises en évidence: elles ont été décrites par une expression analytique, puis à l’aide d’optiques dédiées réduites au niveau nécessaire pour le fonctionnement de l'instrument. La phase des signaux de battement à 20 GHz est affectée d'erreurs de plusieurs 10-3 cycles qui, si elles ne sont pas corrigées, provoquent des erreurs de la mesure de longueur par une ou plusieurs fois la longueur d'onde optique. Nous avons réalisé une étude spécifique du couplage amplitude-phase à l'origine de cette déformation, et montré qu'il est en partie d'origine thermique, lié à la puissance de plusieurs kW/cm² dissipée dans les photodiodes à 20 GHz. Cet effet, voisin de ce qui est connu depuis quelques années en instrumentation microonde sous le nom d' "effet mémoire", est difficile à prendre en compte et la correction qui est faite sur les données ne parvient pas totalement à éviter que le télémètre délivre des valeurs erronées de la distance. En conclusion de ce mémoire deux options sont présentées afin de remédier à cette déformation du signal et d'aboutir à un instrument de haute exactitude. / Beyond its use in geophysics or in large scale metrology, laser-based measurement of long distances is expected to find numerous applications in space missions. Synthetic aperture instruments in formation flight require that the constellation geometry be known and controlled to much better than the wavelength of the observation window. To meet these needs, we have been studying a novel laser ranging scheme that combine an interferometric measurement, performed on a two-mode laser beam, and a time of flight measurement. My thesis focused on the design, implementation, and characterization of the interferometric measurement. To prevent systematic errors due to slow drifts in the microwave components, the two phase measurements of optical wavelength (1.55 microns) and the synthetic wavelength (15 mm) are extracted from the same two-mode interference signal by using a dedicated measurement procedure: we perform interference signal measurements at three optical frequency values of the laser source, calculated based on the time of flight measurement result. The rangefinder utilizes the two-mode interference signal properties and exploits phase and amplitude of the 20 GHz signal in a manner to eliminate long-term phase drifts of the microwave signal in the measurement chain. We can expect in less than 0.1 s, a measurement with sub-nanometer accuracy and resolution. The experimental setup showed that the principle is correct. On an optical path measurement in air, we obtained a 100 pm resolution in 100 us, which allows us to observe the acoustic noise. The measurement signal noise allows expecting a 10 pm resolution in 43 ms. Optical imperfections in the setup have been observed. They were described by an analytical expression, then, using dedicated optics, they were reduced to the level required for the instrument operation. The phase of two-mode signal is affected to several 10-3 cycle errors which, if not corrected, result in errors in the measurement length by multiples of the optical wavelength. We performed a specific study of amplitude-to-phase coupling causing this deformation, and showed that it is part of thermal origin, related to the power of several kW/cm² dissipated in the 20 GHz photodiodes. This effect, close to what has been known for some years in microwave instrumentation under the name of "memory effects", is difficult to take into account and the correction made on the data can not completely prevent the rangefinder from delivering incorrect values of the distance. In concluding this thesis two options are presented to remedy this signal distortion and result in a high accuracy instrument.
5

Ascension vibrationnelle dans les hémoprotéines à l'aide d'impulsions infrarouges intenses à dérive de fréquence

Ventalon, Cathie 30 April 2004 (has links) (PDF)
La compréhension des réactions biochimiques qui se déroulent au sein des protéines est un enjeu fondamental de la biologie actuelle. Dans ce travail, nous nous sommes principalement intéressés aux premières étapes de ces réactions, qui se produisent à l'échelle de la centaine de femtosecondes. Traditionnellement, l'étude de ces premières étapes se fait à l'aide d'impulsions ultracourtes dans le domaine visible ou ultraviolet : ces impulsions font passer la molécule sur un état électronique excité, ce qui permet de déclencher la réaction étudiée de manière ultrarapide et très efficace.<br />Dans ce travail, nous avons exploré une nouvelle voie d'excitation des molécules biologiques : nous avons utilisé des impulsions infrarouges, de manière à placer l'énergie directement dans les vibrations de la molécule. Cette technique permet théoriquement d'explorer la surface de potentiel de la protéine loin de sa région harmonique, et même d'approcher l'état de transition de la réaction catalysée par la protéine. Pour communiquer le plus d'énergie possible à la molécule, nous avons utilisé des impulsions infrarouges intenses et à dérive de fréquence qui permettent de gravir efficacement l'échelle vibrationnelle considérée.<br /><br />Dans une première étape, nous avons engendré des impulsions infrarouges intenses dont l'énergie est de quelques microjoules et le spectre s'étend sur 170 cm-1 environ. Nous avons ensuite caractérisé ces impulsions par diverses méthodes : nous avons notamment mesuré leur phase spectrale au moyen d'une technique de HOT SPIDER temporel, ce qui constitue la première mesure de phase spectrale autoréférencée pour des impulsions centrées autour de 10 µm. <br /><br />Dans une seconde étape, nous avons utilisé ces impulsions infrarouges pour exciter la vibration d'une molécule de CO liée à la myoglobine, puis à l'hémoglobine. Dans ce dernier cas, nous avons démontré l'ascension vibrationnelle de la molécule de CO jusqu'au 7ème niveau excité : nous avons ainsi réalisé la première expérience d'ascension vibrationnelle dans une molécule biologique ou plus généralement dans une macromolécule. Cette technique d'excitation nous a permis d'obtenir des données spectroscopiques nouvelles sur la carboxy-hémoglobine telles que la position et la largeur des raies d'absorption des différentes transitions vibrationnelles, les temps de vie des niveaux excités ainsi que la présence d'une anharmonicité électrique importante.
6

Ascension vibrationnelle dans les hémoprotéines à l'aide d'impulsions infrarouges à dérive de fréquence.

Ventalon, Catherine 30 April 2003 (has links) (PDF)
La compréhension des réactions biochimiques qui se d'eroulent au sein des protéines est un enjeu fondamental de la biologie actuelle. Dans ce travail, nous nous sommes principalement intéressés aux premières étapes de ces réactions, qui se produisent à l'échelle de la centaine de femtosecondes. Traditionnellement, l'étude de ces premières étapes se fait à l'aide d'impulsions ultracourtes dans le domaine visible ou ultraviolet : ces impulsions font passer la molécule sur un état électronique excité, ce qui permet de déclencher la réaction étudiée de manière ultrarapide et très efficace. Dans ce travail, nous avons exploré une nouvelle voie d'excitation des molécules biologiques : nous avons utilisé des impulsions infrarouges, de manière à placer l'énergie directement dans les vibrations de la molécule. Cette technique permet théoriquement d'explorer la surface de potentiel de la protéine loin de sa région harmonique, et même d'approcher l'état de transition de la réaction catalysée par la protéine. Pour communiquer le plus d'énergie possible à la molécule, nous avons utilisé des impulsions infrarouges intenses et à dérive de fréquence qui permettent de gravir efficacement l'échelle vibrationnelle considérée. Dans une première étape, nous avons engendré des impulsions infrarouges intenses dont l'énergie est de quelques microjoules et le spectre s'étend sur 170 cm−1 environ. Nous avons ensuite caractérisé ces impulsions par diverses méthodes : nous avons notamment mesuré leur phase spectrale au moyen d'une technique HOT SPIDER, ce qui constitue la première mesure de phase spectrale autoréférencée pour des impulsions centrées autour de 10 μm. Dans une seconde étape, nous avons utilisé ces impulsions infrarouges pour exciter la vibration d'une molécule de CO liée à la myoglobine, puis à l'hémoglobine. Dans ce dernier cas, nous avons démontré l'ascension vibrationnelle de la molécule de CO jusqu'au 7ème niveau excité : nous avons ainsi réalisé la première expérience d'ascension vibrationnelle dans une molécule biologique ou plus généralement dans une macromolécule. Cette technique d'excitation nous a permis d'obtenir des données spectroscopiques nouvelles sur la carboxy-hémoglobine telles que la position et la largeur des raies d'absorption des différentes transitions vibrationnelles, les temps de vie des niveaux excités ainsi que la presence d'une anharmonicité électrique importante.
7

Correction active des discontinuités pupillaires des télescopes à miroir segmenté pour l’imagerie haut contraste et la haute résolution angulaire / Active correction of pupil discontinuities on segmented telescopes for high contrast imaging and high angular resolution

Janin-Potiron, Pierre 19 October 2017 (has links)
La recherche de signes de vie extraterrestre par l'observation et la caractérisation d'exoplanètes est, entre autres, l'un des enjeux majeurs de l'astrophysique moderne. Cette quête se traduit de manière instrumentale par le développement de télescopes fournissant des résolutions angulaires supérieures à celles obtenues à l'heure actuelle. C'est pourquoi les projets de futurs très grands télescopes font usage de miroirs primaires dépassant les 30 mètres de diamètre. Leur conception est alors inévitablement basée, pour des raisons techniques et technologiques, sur une géométrie segmentée. De ce fait, la segmentation du miroir primaire implique une complexification des structures pupillaires du télescope. Dans le but d'atteindre les niveaux de qualité optique nécessaires aux applications scientifiques visées, la prise en compte et la correction des effets introduits par un mauvais alignement des segments est de prime importance puisque la résolution angulaire d'un télescope non cophasé serait équivalente à celle obtenue avec un segment individuel. Dans ce contexte, je développe dans cette thèse deux analyseurs de cophasage permettant de mesurer et de corriger les aberrations de piston, tip et tilt présentes sur une pupille segmentée. Le premier, nommé Self-Coherent Camera - Phasing Sensor (SCC-PS), est basé sur une analyse du signal en plan focal. Le second, nommé ZELDA - Phasing Sensor (ZELDA-PS), repose quant à lui sur une analyse du signal en plan pupille. Sont présentés dans ce manuscrit les résultats obtenus à l'aide de simulations numériques ainsi que ceux issus de l'implémentation de la SCC-PS sur un banc d'optique d'essai. / Searching for extraterrestrial life through the observation and characterization of exoplanets is, amongst others, one of the major goal of the modern astrophysics. This quest translate from an instrumental point of view to the development of telescope capable of reaching higher angular resolution that what is actually ongoing. That is why the future projects of extremely large telescopes are using primary mirrors exceeding the 30 meters in diameter. Their conception is consequently based, for technical and technological reasons, on a segmented geometry. The segmentation of the primary mirror therefore implies a growing complexity of the structure of its pupil. In order to reach the optical quality required by the sciences cases of interest, taking into account and correct for the effects introduced by a poor alignment of the segments is mandatory, as the angular resolution of a non-cophased telescope is equivalent to the one obtained with a single segment. In this context, I develop in this manuscript two cophasing sensors allowing to measure and correct for the aberrations of piston, tip and tilt present on a segmented pupil. The first one, the Self-Coherent Camera - Phasing Sensor (SCC-PS), is based on a focal plane analysis of the signal. The second one, the ZELDA - Phasing Sensor (ZELDA-PS), is based on a pupil plane analysis of the signal. The results obtained by means of numerical simulations and the first results coming from the implementation of the SCC-PS on an optical bench are presented in this manuscript.
8

Etude ultra-sensible en phase de nano-structures par interferométrie optique à balayage en champ proche / A study on ultra-sensitive phase in nano-structures by near-field scanning optical interferometry

Mok, Jinmyoung 26 March 2015 (has links)
La construction d’un NSOM, dans ce manuscrit de thèse, est décrite en détail. Lacombinaison du système NSOM construit avec un interféromètre est proposée afin d’accéderà des mesures de phase, à la fois de ultra-haute sensibilité mais également de très granderésolution spatiale. Le nom de l’instrument développé est un interferomètre optique àbalayage en champ proche (NSOI, pour l’acronyme en anglais). Le principe est basé surl’utilisation d’un diapason accordable en cristal de quartz, sur lequel se trouve une pointe,afin de sonder le matériau étudié. La mesure de la force de cisaillement de la pointe sondeau voisinage de la surface permet d’assurer la régulation et la stabilité de la distance depositionnement de la pointe par rapport à la surface considérée. Le dispositif est construit encombinant différents éléments électroniques pilotés par un logiciel développé en langageLab-VIEW. Le bruit de la mesure en NSOI est supprimé par un calcul simple basé sur lathéorie de l’optique ondulatoire et des interférences associées. Le système permet deréaliser des mesures optiques en champ proche ainsi que la détermination en hauterésolution de la phase du champ optique. L’échantillon SNG01 (l’un des réseaux utilisés pourcaractériser notre microscope à balayage en champ proche), ainsi que des disques optiques(CD, DVD and disques blu-ray) ont été utilisés pour tester la faisabilité et les performancesde notre système.Dans ce manuscrit de thèse, le graphène et les monocouches de MoS2 sont étudiés. Nous montrons qu’une épaisseur à l’échelle atomique peut être résolue par notresystème NSOI, avec l’utilisation de l’algorithme de suppression du bruit de mesure. Lesjoints de grain du graphène sont observés à grande échelle, via la technique d’imagerie parcollection en champ proche et par la réalisation de cartographies de phase. En particulier,les tensions internes à une couche de graphène sont observées, uniquement dans le casd’une imagerie de phase. / In this thesis, near-field scanning optical interferometry (NSOI), which combinesNSOM with interferometer, is proposed for the phase measurement. The shear-forcedetection scheme is applied for distance regulation. The hardware of the systemis constructed by combining various electronic devices, and the operating softwareis coded by LabVIEW. Unwanted background signal is removed by simple calculationbased on interference theory. By using this, the near-field optical measurementand the ultra-sensitive phase investigation of nano-materials are performed. 2D materialssuch as graphene and monolayer MoS2 are investigated. It is shown thatatomic-scale thickness can be resolved by the NSOI. Especially, the grain boundariesof graphene and the seed of MoS2 can be found by phase detection. In addition,direct laser writing (DLW) on silver-containing glass is observed by using NSOM,and NSOI. For the first time, the writing threshold is correlatively observed in thefluorescence imaging and the near-field phase image.

Page generated in 0.0502 seconds