• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Apprentissage à base de Noyaux Sémantiques pour le Traitement de Données Textuelles

Aseervatham, Sujeevan 12 December 2007 (has links) (PDF)
Depuis le début des années 80, les méthodes statistiques et, plus spécifiquement, les méthodes d'apprentissage appliquées au traitement de données textuelles connaissent un intérêt grandissant. Cette tendance est principalement due au fait que la taille des corpus est en perpétuelle croissance. Ainsi, les méthodes utilisant le travail d'experts sont devenues des processus coûteux perdant peu à peu de leur popularité au profit des systèmes d'apprentissage.<br />Dans le cadre de cette thèse, nous nous intéressons principalement à deux axes.<br />Le premier axe porte sur l'étude des problématiques liées au traitement de données textuelles structurées par des approches à base de noyaux. Nous présentons, dans ce contexte, un noyau sémantique pour les documents structurés en sections notamment sous le format XML. Le noyau tire ses informations sémantiques à partir d'une source de connaissances externe, à savoir un thésaurus. Notre noyau a été testé sur un corpus de documents médicaux avec le thésaurus médical UMLS. Il a été classé, lors d'un challenge international de catégorisation de documents médicaux, parmi les 10 méthodes les plus performantes sur 44. <br />Le second axe porte sur l'étude des concepts latents extraits par des méthodes statistiques telles que l'analyse sémantique latente (LSA). Nous présentons, dans une première partie, des noyaux exploitant des concepts linguistiques provenant d'une source externe et des concepts statistiques issus de la LSA. Nous montrons qu'un noyau intégrant les deux types de concepts permet d'améliorer les performances. Puis, dans un deuxième temps, nous présentons un noyau utilisant des LSA locaux afin d'extraire des concepts latents permettant d'obtenir une représentation plus fine des documents.
2

Prise en compte des connaissances du domaine dans l'analyse transcriptomique : Similarité sémantique, classification fonctionnelle et profils flous : application au cancer colorectal / Using domain knowledge in the Transcriptomic analysis : Semantic similarity, functional classification and fuzzy profiles. Application to colorectal cancer

Benabderrahmane, Sidahmed 15 December 2011 (has links)
L'analyse bioinformatique des données de transcriptomique a pour but d'identifier les gènes qui présentent des variations d'expression entre différentes situations, par exemple entre des échantillons de tissu sain et de tissu malade et de caractériser ces gènes à partir de leurs annotations fonctionnelles. Dans ce travail de thèse, je propose quatre contributions pour la prise en compte des connaissances du domaine dans ces méthodes. Tout d'abord je définis une nouvelle mesure de similarité sémantique et fonctionnelle (IntelliGO) entre les gènes, qui exploite au mieux les annotations fonctionnelles issues de l'ontologie GO ('Gene Ontology'). Je montre ensuite, grâce à une méthodologie d'évaluation rigoureuse, que la mesure IntelliGO est performante pour la classification fonctionnelle des gènes. En troisième contribution je propose une approche différentielle avec affectation floue pour la construction de profils d'expression différentielle (PED). Je définis alors un algorithme d'analyse de recouvrement entre classes fonctionnelles et ensemble des références, ici les PEDs, pour mettre en évidence des gènes ayant à la fois les mêmes variations d'expression et des annotations fonctionnelles similaires. Cette méthode est appliquée à des données expérimentales produites à partir d'échantillons de tissus sains, de tumeur colo-rectale et de lignée cellulaire cancéreuse. Finalement, la mesure de similarité IntelliGO est généralisée à d'autres vocabulaires structurés en graphe acyclique dirigé et enraciné (rDAG) comme l'est l'ontologie GO, avec un exemple d'application concernant la réduction sémantique d'attributs avant la fouille. / Bioinformatic analyses of transcriptomic data aims to identify genes with variations in their expression level in different tissue samples, for example tissues from healthy versus seek patients, and to characterize these genes on the basis of their functional annotation. In this thesis, I present four contributions for taking into account domain knowledge in these methods. Firstly, I define a new semantic and functional similarity measure which optimally exploits functional annotations from Gene Ontology (GO). Then, I show, thanks to a rigorous evaluation method, that this measure is efficient for the functional classification of genes. In the third contribution, I propose a differential approach with fuzzy assignment for building differential expression profiles (DEPs). I define an algorithm for analyzing overlaps between functional clusters and reference sets such as DEPs here, in order to point out genes that have both similar functional annotation and similar variations in expression. This method is applied to experimental data produced from samples of healthy tissue, colorectal tumor and cancerous cultured cell line. Finally the similarity measure IntelliGO is generalized to another structured vocabulary organized as GO as a rooted directed acyclic graph, with an application concerning the semantic reduction of attributes before mining.
3

Prise en compte des connaissances du domaine dans l'analyse transcriptomique : Similarité sémantique, classification fonctionnelle et profils flous. Application au cancer colorectal.

Benabderrahmane, Sidahmed 15 December 2011 (has links) (PDF)
L'analyse bioinformatique des données de transcriptomique a pour but d'identifier les gènes qui présentent des variations d'expression entre différentes situations, par exemple entre des échantillons de tissu sain et de tissu malade et de caractériser ces gènes à partir de leurs annotations fonctionnelles. Dans ce travail de thèse, je propose quatre contributions pour la prise en compte des connaissances du domaine dans ces méthodes. Tout d'abord je définis une nouvelle mesure de similarité sémantique et fonctionnelle (IntelliGO) entre les gènes, qui exploite au mieux les annotations fonctionnelles issues de l'ontologie GO ('Gene Ontology'). Je montre ensuite, grâce à une méthodologie d'évaluation rigoureuse, que la mesure IntelliGO est performante pour la classification fonctionnelle des gènes. En troisième contribution je propose une approche différentielle avec affectation floue pour la construction de profils d'expression différentielle (PED). Je définis alors un algorithme d'analyse de recouvrement entre classes fonctionnelles et ensemble des références, ici les PEDs, pour mettre en évidence des gènes ayant à la fois les mêmes variations d'expression et des annotations fonctionnelles similaires. Cette méthode est appliquée à des données expérimentales produites à partir d'échantillons de tissus sains, de tumeur colo-rectale et de lignée cellulaire cancéreuse. Finalement, la mesure de similarité IntelliGO est généralisée à d'autres vocabulaires structurés en graphe acyclique dirigé et enraciné (rDAG) comme l'est l'ontologie GO, avec un exemple d'application concernant la réduction sémantique d'attributs avant la fouille.

Page generated in 0.3449 seconds