• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 41
  • 12
  • 6
  • 2
  • 2
  • 1
  • Tagged with
  • 117
  • 25
  • 22
  • 18
  • 16
  • 14
  • 14
  • 13
  • 13
  • 13
  • 13
  • 12
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Procedure Using Rotylenchulus Reniformis Nucleotide Sequences to Quantitatively Measure Plant-Parasitic Nematode Infestation Levels using Metagenomic Dna Isolated Directly from Soil

Showmaker, Kurtis C 15 December 2012 (has links)
Molecular diagnostic tests have been developed and utilized to diagnose and to confirm diagnoses of many plant-parasitic nematodes. We evaluate the potential of a qPCR assay to detect and quantify Rotylenchulus reniformis in Mississippi directly from soil. A novel pipeline utilizing multiple databases containing nematode DNA and EST sequences was developed to aid in the selection of R. reniformis primers used in a PCR and qPCR assays. In vitro testing showed that the primers and probes developed from the novel pipeline for the qPCR assays could accurately detect the presence of R. reniformis. Subsequent testing resulted in a trend of increasing observed number of R. reniformis resulting in increasing estimates by qPCR
2

Using oligonucleotide signatures to build a system for effective detection of pathogenic bacteria in metagenomic samples

Emmett, Warren Anthony 11 August 2009 (has links)
Pathogenic bacteria are responsible for millions of deaths every year with an estimated mortality of 70 million people by 2010 for Mycobacterium tuberculosis alone. Novel methods for identification of bacterial species in hosts, urban environments, water sources and food stuffs are required to advance diagnosis and preventative medicine. Detection of bacterial species in environmental samples is a complex task since large numbers of bacteria are present and are resistant to culturing. Therefore, the genetic content of the entire sample has to be analysed simultaneously and this constitutes a metagenomic sample. Commonly-used methods of bacterial identification focus on detection of specific genomic regions to determine species. Currently only one percent of a metagenomic sample can be used for identification employing phylogenetic markers. This method is highly inefficient. The search for more widespread markers within each genome is essential to improve detection methods. Also, modern sequencing technologies used in these environments have short read lengths which prove difficult to assemble e.g. repeats can lead to incorrect assembly. The use of overrepresented oligonucleotides provides a solution to both of these difficulties. Overrepresented oligonucleotides (8-14bp in length) are utilised to differentiate between species based on observed frequency of occurrence rather than presence or absence. They occur throughout the genome thereby increasing genomic coverage. Furthermore, overrepresented oligonucleotides can be easily identified in a raw metagenomic sample, bypassing the need for sequence assembly. Raw oligonucleotide data was filtered, analysed and imported into a structured database. A program, Oligosignatures, allowed for creation of species and phylogenetic lineage specific oligonucleotide markers dependent on the selection of species specified by the user. For the purposes of this study, the context of bacterial identification in an unknown environment was selected. A similarity trial was then executed to determine if strains of the same species can be separated from each other using overrepresented oligonucleotides. Outcomes of this test provided a guideline for the creation of species and lineage specific oligonucleotide markers. Each species and lineage was therefore described by a marker profile which consisted of representative oligonucleotide markers. These marker profiles were then tested against artificial and experimental data to determine their effectivity. Two approaches were used for testing, namely Oligonucleotide frequency analysis and Sequence read analysis. Oligonucleotide frequency analysis focused on the identification of species dependent on the global frequencies of marker oligonucleotides within each marker profile. Sequence read analysis attempted to assign metagenomic reads to a specific species dependent on the number of marker oligonucleotides present within the read. The final database contained 439 bacterial genomes from 22 different phylogenetic lineages. Interpretation of the results obtained after strain similarity testing showed that strains of the same species had highly similar markers and were not separable using this approach. All strains of a species that conformed to this premise were reduced to a single representative member. Similarly, species marker profiles demonstrated that closely related species remained difficult to separate. Twenty-one of the 22 lineages showed sufficient lineage specific markers for use in testing. This provides support for the abundance of overrepresented oligonucleotides and their potential for use as a detection method. In general, metagenomic testing of marker profiles showed that species specific determination was prone to interference, specifically, in closely related species. However, more distantly related species could be separated using both methods. Lineage discrimination generated more reliable results proving that lineage determination was possible in both artificial and experimental datasets. Oligonucleotide frequency analysis, the most sensitive approach, showed the best results for lineage determination but poorer results for species identification. Sequence read analysis provided a more effective method of determining confidence using different thresholds for read classification. In conclusion, the use of overrepresented oligonucleotides holds promise as a novel method for bacterial identification in a metagenomic context. Although several obstacles still prevent optimal utilization of these oligonucleotides, with further research the classification and identification of species and phylogenetic lineages from metagenomic samples can become a reality. Copyright / Dissertation (MSc)--University of Pretoria, 2009. / Biochemistry / unrestricted
3

Large-scale metagenomic analysis of food-associated microbial communities and their links with the human microbiome

Carlino, Niccolò 26 January 2024 (has links)
Complex microbiomes are part of the food we eat: they are naturally present on the raw material, they merge along the food system, or they can be intentionally inoculated. Whether their presence is desired, such as in case of fermentation or probiotic supplementation, or undesired, in case of pathogenic or spoilage microbes, depends on who they are and what they are doing and therefore several studies investigated the microbiota of specific foods. However, the diversity of food microbiomes remains largely unexplored and similar studies present inconsistencies in methods and results. The study of the food microbiome is relevant also in light of the human microbiome and its multifaceted connection to hosts’ health status. Diet is one of the main factors influencing the human microbiome and many studies investigated how nutrition impacts the endogenous microbial communities both in the gut and in the oral cavity. Nevertheless, they largely overlooked the possibility of direct contribution of food-origin microorganisms. The primary aim of my PhD was the comprehensive characterization of foodborne microbial communities with the ultimate goal of estimating their impact on the human microbiome. This research intended to be humble contribution to the global effort in understanding the microbial sources building these composite ecosystems inhabiting the human body. In order to explore the food microbiome diversity, I selected and collected 583 publicly available food (shotgun) metagenomes and integrated them with 1950 newly sequenced food metagenomes. Through an assembly-based pipeline, I reconstructed >10,000 metagenome-assembled genomes (MAGs) that resulted in 290 previously undescribed taxa and, hence, firstly observed in this work. I characterized the composition of microbial communities in food, proving strong specificity across food categories and types through statistical analysis and machine learning approaches. The uniformly and coherently processed curated metadata, taxonomic profiles and reconstructed genomes are publicly available in a resource called curatedFoodMetagenomicData (cFMD). To investigate the presence of food-associated bacteria among human oral and gut microbiomes, I analyzed 20,000 human metagenomes available in curatedMetagenomicData (cMD) through the same expanded pipeline used for food samples. The overlap between food and human microbiomes showed high variations according to host characteristics and the food prevalent species accounted on average for 3% of relative abundance in adult microbiomes. I recognized 43 bacterial species prevalent in both environments that were investigated at the strain level, showing close genomic similarities of strains found both in food and humans.To our knowledge this was the first attempt to investigate the global food microbiome and to estimate its involvement in human microbiome at a large-scale. Our results showedan expansion of known and yet-to-be-isolated species associated with food microbiomes, their characterization to uncover microbial diversity and provide insights on links with the human microbiome, and the release of a publicly-available resource as cFMD that will support the use of metagenomics in food microbiology and food safety, certificationand quality control applications.
4

Ecology Of Composted Bedded Pack And Its Impact On The Udder Microbiome With An Emphasis On Mastitis Epidemiology

Andrews, Tucker 01 January 2019 (has links)
Infections of the cow udder leading to mastitis and lower milk quality are a critical challenge facing northeast organic dairy farmers. Limited mastitis treatment options are available to organic producers and bedding systems impact cow health, including mastitis risk. Composted bedded pack, a system touted for increased cow comfort and well-being, allows stratified accumulation of bedding and manure in the barn. This method is gaining popularity among organic producers, yet little is known about the microbiota of the accumulated pack and its interaction with the cow mammary gland. An in-depth single farm study was conducted that surveyed bedded pack (microbiome and microarthropod community), dipteran vectors of bacterial mastitis pathogens, and the teat skin and teat cistern milk microbiomes. Comparisons were made with four additional farms utilizing bedded packs to test generality of results. Few fly pests were observed in the bedded pack. However, bedding on all farms was found to harbor the mesostigmatid mite genus Glyptholaspis, a well-established predator of nematodes and muscid fly larvae, suggesting that predators may suppress populations of biting flies in bedded pack barns. Additionally, the fungivorous genus Rhizoglyphus was commonly abundant in all farms, suggesting that the mite community regulates microbial activity at multiple trophic levels. High-throughput sequencing of universal marker genes for bacterial and fungal communities was used to characterize the skin and milk microbiome of cows with both a healthy and infected quarter on the case study farm, and the composted bedded pack of all five farms. The bedded pack microbiome varied with bedding material and management style; fungal taxa were primarily yeasts of the Ascomycota; all farms additionally contained anaerobic fungi associated with the bovine rumen. Common bacterial genera included Acinetobacter and Pseudomonas, both of which were also commonly observed on teat skin and in milk. The udder microbiome varied through time and between skin and milk. Both healthy and infected milk microbiomes reflected a diverse group of microbial DNA sequences. Health status of the quarter changed whether taxa were shared between the teat skin, milk, and bedding. Proportion of taxa shared between healthy milk and skin was stable while taxa shared in infected quarters varied widely. Taxa shared among all habitats included yeast genus Debaryomyces and bacteria Acinetobacter guillouiaea. Results support an ecological interpretation of both the udder and the bedded pack environment and support the notion that mastitis can be described as an imbalance of the healthy mammary gland microbiome. Future work might compare udder health between common bedding practices, investigating the impact of bedding on the microbiota of the mammary gland in the healthy and diseased state.
5

16S rRNA-Based Tag Pyrosequencing of Complex Food and Wastewater Environments: Microbial Diversity and Dynamics

McElhany, Katherine 2010 December 1900 (has links)
Environmental microbiology has traditionally been performed using culture-based methods. However, in the last few decades, the emergence of molecular methods has changed the field considerably. The latest development in this area has been the introduction of next-generation sequencing, including pyrosequencing. These technologies allow the massively parallel sequencing of millions of DNA strands and represent a major development in sequencing technologies. The purpose of this study was to use both pyrosequencing and traditional culture-based techniques to investigate the diversity and dynamics of bacterial populations within milk and untreated sewage sludge samples. Pasteurized and raw milk samples were collected from grocery stores and dairies within Texas. Milk samples were analyzed by plating, pyrosequencing, and an assay for the presence of cell-cell signaling molecules. Samples were processed, stored, and then evaluated again for spoilage microflora. The results of this study showed that raw milk had a considerably higher bacterial load, more diversity between samples, and a significantly higher concentration of pathogens than pasteurized milk. Additionally, this study provided evidence for varying spoilage microflora between raw and pasteurized milk, as well as evidence for the production of cell-cell signaling molecules by bacterial organisms involved in milk spoilage. Four samplings of untreated sewage sludge were collected from wastewater treatment plants in seven different municipalities across the United States. Samples were subjected to quantification of selected bacterial organisms by culture and a pyrosequencing analysis was performed on extracted community DNA. The results of this study showed that untreated sewage sludge is inhabited by a huge diversity of microorganisms and that certain municipalities may have distinct bacterial populations that are conserved over time. Additionally, this study provided some evidence for seasonal differences in several of the major bacterial phyla. Lastly, this study emphasized the challenges of comparing results obtained by culture and pyrosequencing. In conclusion, this study showed that both milk and sewage are highly diverse, dynamic environments that can contain organisms of public health concern. The use of both culture-based methods and pyrosequencing in this study proved a complementary approach, providing a more comprehensive picture of both microbial environments.
6

Análise metaproteogenômica de comunidades bacterianas enriquecidas visando a bioprospecção de enzimas de interesse biotecnológico = Prospection of biotechnological enzymes through metaproteogenomic analysis of a microbial consortium / Prospection of biotechnological enzymes through metaproteogenomic analysis of a microbial consortium

Buchli, Fernanda, 1989- 04 February 2014 (has links)
Orientador: Fabio Marcio Squina / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-24T21:44:36Z (GMT). No. of bitstreams: 1 Buchli_Fernanda_M.pdf: 4527154 bytes, checksum: 3262f15a20dc87dfa1272cb774a61703 (MD5) Previous issue date: 2014 / Resumo: A Biomassa vegetal tem sido reconhecida como uma potencial fonte de açúcares fermentescíveis para a produção de biocombustível, principalmente pelo crescente incentivo do uso de fontes renováveis de combustíveis e sustentabilidade. Atualmente, no Brasil, o etanol é quase exclusivamente produzido pela fermentação da sacarose, um açúcar que pode ser facilmente extraído da cana-de-açúcar, esse etanol produzido a partir da sacarose é chamado de etanol de primeira geração. O processo de extração dos açúcares da biomassa da cana, através da hidrólise enzimática para a produção do chamado etanol de segunda geração, ainda apresenta um baixo rendimento e elevado custo de produção. O objetivo deste trabalho foi à busca por enzimas capazes de promover uma degradação mais eficiente, contribuindo para a viabilidade da produção do bioetanol de segunda geração. Para este estudo foi utilizada uma abordagem de metagenômica e metaproteômica. A análise metagenômica baseou-se em uma amostra de solo de canavial a qual teve seu DNA extraído e sequenciado. Em paralelo utilizou-se este solo para o estabelecimento de dois consórcios microbianos utilizando o bagaço de cana-de-açúcar como única fonte de carbono, estes consórcios também foram sequenciados. As sequências foram anotadas e analisadas na plataforma MG-Rast. Para a abordagem metaproteômica foram utilizadas proteínas extraídas diretamente do solo e o secretoma de ambos os consórcios. A análise do sequenciamento revelou a predominância de bactérias, que representaram 94,86% do metagenoma de solo de canavial, sendo o filo Proteobacteria o grupo mais abundante em todos os metagenomas avaliados. Durante as análises foi possível observar mudanças populacionais entre os metagenomas, a exemplo, as classes Bacteroidia, Alphaproteobacteria e Gammaproteobacteria se mostraram mais abundantes nos metagenomas dos consórcios do que do solo. Analisando as proteínas identificadas nas análises de metaproteômica pertencentes à família das glicosil hidrolases nota-se uma predominância das hemicelulases seguida das celulases entre as enzimas mais abundantes identificadas para as três comunidades analisadas. Dentre as celulases identificadas as mais abundantes foram a GH1, GH3 e GH9, entres as hemicelulases as mais abundantes foram GH2, GH43 e GH51. As análises de metagenômica e metaproteômica sugerem que os consórcios apresentam um enriquecimento das enzimas de interesse e revelam o potencial destas comunidades para prospecção de novas enzimas envolvidas na degradação da biomassa lignocelulósica / Abstract: Plant Biomass has been recognized as a potential source of fermentable sugars for biofuel production, mainly by the growing concern with renewable fuels and sustainability. Ethanol is currently almost exclusively produced by fermentation of sucrose, a sugar that can be easily extracted from sugar cane and thus, this process is called first generation ethanol. The process of extracting the sugars from sugarcane biomass, through enzymatic hydrolysis to produce the so-called second-generation ethanol, still has a low yield and high cost process. The objective of this study was to search for enzymes capable of promoting a more efficient degradation, making possible the production of second generation bioethanol. We used the metagenomic and metaproteomic approaches. The metagenomic analysis was based on a soil sample of sugar cane which had its DNA extracted and sequenced. In parallel the soil was used to establish two microbial consortia using sugarcane bagasse as a sole carbon source, these consortia were also sequenced. The sequences were annotated and analyzed in MG-Rast platform. Proteins extracted directly from soil and the secretome of both consortia were used for metaproteomic approach. The sequencing analysis revealed the predominance of bacteria, representing 94.86 % of the soil metagenome, phylum Proteobacteria is the most abundant group in all metagenomas reviews. During the analysis it was observed population changes between the metagenomes, we notice some groups that seem to be more abundant in consortia¿s metagenomes than in soil. Between these enriched classes of microorganisms we have the Bacteroidia, Alphaproteobacteria and Gammaproteobacteria classes. Among the proteins identified in the metaproteomic 61% of the soil¿s proteins represent glycosyl hydrolases and 25% glycosyl transferases, the consortia presented a similar profile. Analyzing the enzymes belonging to the family of glycoside hydrolases we can notice a predominance of hemicellulases then cellulases among the most abundant enzymes identified for the three communities. Among the most abundant cellulases identified were the GH1, GH3 and GH9, among hemicellulases the most abundant were GH2, GH43 and GH51. The metagenomic and metaproteomic analyzes suggest that consortia have an enrichment of the enzymes of interest and reveal the potential of these communities to search for new enzymes involved in the degradation of lignocellulosic biomass / Mestrado / Bioquimica / Mestra em Biologia Funcional e Molecular
7

The Reconstruction and Analysis of Oral Microbiome Composition Using Dental Calculus from the Mississippi State Asylum (1855-1935), Jackson, Ms

Belanich, Jonathan Robert 12 August 2016 (has links) (PDF)
The human oral microbiome is the total amount of microbial biodiversity present in the oral cavity and, given its relevance to human health and disease, has recently become a foci for study. By analyzing dental calculus, and sequencing the bacterial DNA, it is possible to reconstruct and examine the oral microbiomes of past individuals. In this study, dental calculus was sampled from (N=4) skeletons recovered from the cemetery of the mid 19th- 20th, century Mississippi State Asylum in Jackson, MS. Bacterial DNA isolation and shotgun sequencing were successful, with 16S analyses yielding an average of 96 identified species. All samples were significantly different from each other at all taxonomic levels (p <0.0001). Targeted examinations for opportunistically pathogenic oral bacteria were performed, but no detectable bacterial DNA was found in the samples. This study is the first to reconstruct the oral microbiomes of a subsample of an historic institutionalized population.
8

Metagenomic Analysis of Antibiotic Resistance Genes in the Fecal Microbiome Following Therapeutic and Prophylactic Antibiotic Administration in Dairy Cows

Caudle, Lindsey Renee 24 July 2014 (has links)
The use of antibiotics in dairy cattle has the potential to stimulate the development and subsequent fecal dissemination of antibiotic resistance genes (ARGs) in bacteria. The objectives were to use metagenomic techniques to evaluate the effect of antibiotic treatment on ARG prevalence in the fecal microbiome of the dairy cow and to determine the temporal excretion pattern of ARGs. Twelve Holstein cows were assigned to one of four antibiotic treatments: control, pirlimycin, ceftiofur, or cephapirin. Fecal samples were collected on d -1, 1, 3, 5, 7, 14, 21, and 28. Samples were freeze-dried and subjected to DNA extraction followed by Illumina paired-end HiSeq sequencing and quantitative polymerase chain reaction (qPCR). Illumina sequences were analyzed using MG-RAST and the Antibiotic Resistance Gene Database (ARDB) via BLAST. Abundance of ampC, ermB, tetO, tetW, and 16S rRNA genes were determined using qPCR. All data were statistically analyzed with PROC GLIMMIX in SAS. Antibiotic treatment resulted in a shift in bacterial cell functions. Sequences associated with 'resistance to antibiotics and toxic compounds' were higher in ceftiofur-treated cows than control cows. Ceftiofur-treated cows had a higher abundance of 𝛽-lactam and multidrug resistance sequences than control cows. There was no effect of treatment or day on fecal tetO and ermB excretion. The relative abundances of tetW and ampC were higher on d 3 post-treatment than d 5 and d 28. In conclusion, antibiotic use in dairy cattle shifted bacterial cell functions and temporarily increased antibiotic resistance in the fecal microbiome. / Master of Science
9

The application of metagenomic sequencing to detect and characterize emerging porcine viruses

Palinski, Rachel January 1900 (has links)
Doctor of Philosophy / Department of Diagnostic Medicine/Pathobiology / Raymond R. R. Rowland / Emerging viral diseases threaten the health of the US swineherd and have the potential to impact the industry. Parvoviruses are capable of infecting birds, livestock and humans, however, in swine, parvoviruses cause reproductive failure and contribute to a devastating set of diseases termed porcine circovirus associated disease (PCVAD). Here, a divergent porcine parvovirus, porcine parvovirus 7 (PPV7), distantly related to known parvovirus sequences, was identified in market pigs in the US. The PPV7 non-structural protein displayed 42.4% similarity to Eidolon helvum parvovirus 2 and 37.9% similarity to turkey parvovirus. Conserved parvovirus replicase motifs including three rolling circle replication (RCR), two NTP-binding motifs and a helicase- binding domain, were present in PPV7. Analysis by qPCR of 182 porcine samples found 16 (8.6%) positive, suggesting moderate nucleic acid prevalence in US swine. Paramyxoviruses are capable of infecting various species including cattle, pigs and humans, causing respiratory disease and importantly, can overcome species barriers causing disease. In 2013, a novel paramyxovirus sequence was described in Hong Kong, China in slaughterhouse pigs, and subsequently named porcine parainfluenza virus 1 (PPIV1). The second study identifies two complete PPIV1 genomes in US pigs originating in Oklahoma and Nebraska that display 90.0-95.3% identity to the Chinese strains. Molecular analysis by qPCR resulted in 6.1% prevalence in 279 porcine respiratory samples. Further serological analysis revealed 66.1% of 59 porcine sera samples were positive by PPIV1 F ELISA. Eleven 3-week old nursery pigs from a PPIV1 naturally infected herd were monitored for signs of infection. No clinical signs were seen in the animals, however, six pigs and the lungs of one animal tested qPCR positive by the conclusion of the study. Taken together, PPIV1 is moderately prevalent in US swine-herds. Previously known to infect avian species, canines and swine, recent reports have identified circoviruses in bats, mink, and human feces. In pigs, porcine circovirus 2 (PCV2) is essential to PCVAD, a group of diseases including reproductive failure, respiratory disease complex (PRDC), porcine dermatitis and nephropathy syndrome (PDNS) and postweaning multisystemic wasting syndrome (PMWS). Additionally, PCV2 nucleic acid has been detected in mammalian species other than swine such as cattle and mink. The final study focuses on the identification and characterization of a divergent circovirus, porcine circovirus 3, identified in aborted mummies taken from sows displaying clinical and histological signs of PDNS. Putative capsid and replicase open reading frames display 37% and 55% identity to PCV2, respectively. A retrospective study of 48 PDNS cases, PCV2 negative by immunohistochemistry (IHC), identified 45 positive and 60% of a subset, positive for PCV3 by IHC. Molecular and serological prevalence studies revealed 12.5% nucleic acid and 55% antibody prevalence in US swine samples. Collectively, these studies identify emerging porcine viruses with the potential to cause disease using metagenomic sequencing. The results of these studies will help to mitigate the risk attributed to emerging swine viruses causing disease outbreaks.
10

Contexto genômico e expressão de genes envolvidos na redução do sulfato em solos de manguezal / Genomic context and expression of genes involved in sulfate reduction in mangrove soils

Lourenço, Marcus Venicius de Mello 19 December 2016 (has links)
Os manguezais compõem um bioma de interface entre o continente e o oceano em regiões intertropicais, ambiente este caracterizado por condições únicas ambientais e uma elevada biodiversidade. Este projeto tem como objetivo estudar, utilizando abordagens de metagenômica e metatranscriptomica, as comunidades microbianas encontradas nos manguezais localizados nos municípios de Bertioga/SP e Cananeia/SP, com enfoque nos genes relacionados ao processo de redução do sulfato. Para tanto, uma biblioteca metagenômica contendo 12.960 clones em vetor fosmídeo foi triada por meio de PCR específico para o gene dsrB, ao mesmo passo que esta foi completamente sequenciada em plataforma Illumina HiSeq2000. Foram obtidos três insertos metagenomicos (23D5, MGV 10001431 e MGV 10016026, com 31, 31 e 34 kb, respectivamente). Estes foram então anotados e analisados mais detalhadamente. A inserção 23D5 foi a única a apresentar genes essenciais para a redução dissimilatória do sulfato (apr, hdr, dsr, sat). A diversidade taxonômica dos grupos relacionados ao ciclo do enxofre demonstrou a predominância dos filos Bacteroidetes e Proteobacteria enquanto a análise filogenética para gene dsrB apresentou diferenças entre os três insertos, afiliando os mesmos a sequências similares a Firmicutes e Deltaproteobacteria e revelando serem diferentes das sequências presentes em base de dados. A análise de metatrascriptomica dos quatro manguezais apresentou um padrão de expressão diferencial para o cluster dsr de acordo com o estado de conservação dos manguezais estudados. Estes resultados compõem o primeiro acesso a fragmentos genômicos e a funcionalidade dos mesmos em microrganismos redutores de sulfato em solos de manguezais. / Mangrove is a biome composed of the interface between the continent and the ocean in tropical areas, characterizing by unique environmental conditions and high biodiversity. Here, we aimed to study, using metagenomic and metatranscriptomic approaches, the microbial communities identified in the mangroves located in the cities of Bertioga/SP and Cananeia/SP, focusing on genes related to the sulfate reduction process. For this purpose, a metagenomic library containing 12.960 clones in fosmid vector was screened by PCR for the specific dsrB gene, and the whole library was also completely sequenced by the Illumina HiSeq2000 platform. Three metagenomic inserts were obtained (23D5, MGV 10016026 and MGV 10001431, with 31, 31 and 34 kb, respectively), which were recorded and detail analyzed. The insertion 23D5 was the only one that presents essential genes for dissimilatory sulfate reduction (apr, hdr, dsr, sat). The taxonomic diversity of groups related to the sulfur cycle demonstrated the predominance of Bacteroidetes and Proteobacteria phyla, while phylogenetic analysis to dsrB gene showed differences between the three inserts, affiliating them to similar sequences of Firmicutes and Deltaproteobacteria, and revealing differ from the sequences present in the data base. The metatranscriptomic analysis of the four mangroves showed a pattern of differential expression for the DSR cluster according to the conservation status of the studied mangroves. These results constitute the first access of genomic fragments and functionality of the sulfate reducing microorganisms in mangrove soils.

Page generated in 0.057 seconds